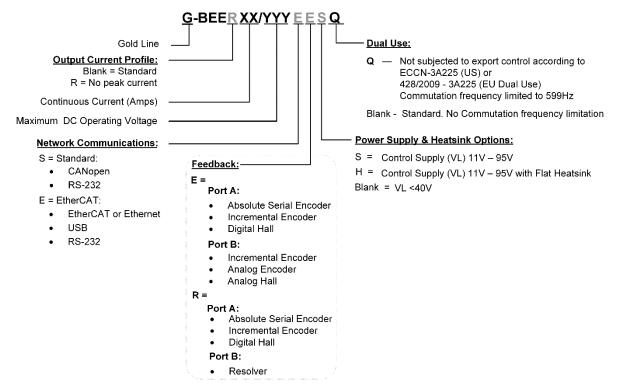

Gold Bee Digital Servo Drive Installation Guide CAN and EtherCAT

Notice

This guide is delivered subject to the following conditions and restrictions:

- This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such
 information is supplied solely for the purpose of assisting users of the Gold Bee servo drive
 in its installation.
- The text and graphics included in this manual are for the purpose of illustration and reference only. The specifications on which they are based are subject to change without notice.
- Information in this document is subject to change without notice.


Document no. MAN-G-BEE (Ver. 2.008)

Copyright © 2023

Elmo Motion Control Ltd.

All rights reserved.

Catalog Number

To order the accessories refer to the Chapter 13: Accessories.

Revision History

Version	Date
Ver. 1.000	Oct 2014
Ver. 1.001	Dec 2014
Ver. 1.002	Jan 2015
Ver. 1.003	Jan 2015
Ver. 1.004	Mar 2015
Ver. 1.005	Mar 2015
Ver. 1.006	May 2015
Ver. 1.007	June 2015
Ver. 1.008	Mar 2016
Ver. 1.009	Sept 2016
Ver. 1.010	Oct 2016
Ver. 1.011	Aug 2017
Ver. 1.012	May 2018
Ver. 1.013	Oct 2018
Ver. 2.000	Jan 2019
Ver. 2.001	Jan 2020
Ver. 2.002	May 2020
Ver. 2.003	Sept 2021
Ver. 2.004	Oct 2021
Ver. 2.005	Dec 2021
Ver. 2.006	Apr 2022
Ver. 2.007	Sept 2022
Ver. 2.008	Jan 2023

Chapter:	1: T	his Installation Guide	7				
Chapter 2	2: S	afety Information	7				
2.1.		ings					
2.2. Cautions							
2.3.	Warr	anty Information	8				
Chapter	3: P	roduct Description	9				
Chapter 4	4: T	echnical Information	10				
4.1.	Physi	cal Specifications	10				
4.2.	60V a	nd 100V Models Technical Data	11				
4.3.	200V	Models Technical Data	11				
4.4.		e Technical Data					
4.5.		ol Supply Input Voltage (VL)					
4.6.		uct Features					
4.7.	Envir	onmental Conditions	14				
	4.7.1.	ExtrIQ Conditions	14				
	4.7.2.	ExtrIQ Series Environmental Conditions for STO	15				
Chapter !	5· S	tandards and Certification	16				
5.1.		ional Safety					
5.2.		ical Safety					
5.3.		omagnetic Compatibility					
5.4.		onmental					
5.5.		Compliant Standards					
5.6.	CE De	eclaration	17				
5.7.	Dual	Use	17				
Chapter (6: U	Inpacking the Drive Components	18				
Chapter :	7: N	Nounting the Gold Bee	19				
7.1.	Mour	nting the Optional Acessories Heat Sinks	22				
7.2.	Mour	nting Gold Bee to an External Heatsink	24				
Chapter 8	8: lı	ntegrating the Gold Bee on a PCB	25				
8.1.		r Returns (PR)					
8.2.	COM	RET	25				
8.3.	Earth	Connection (PE)	25				
8.4.	Powe	r Return (PR), Common Return (COMRET) and Earth Connections (PE)	26				
8.5.	Logic	and Control Cabling and Wiring	27				
	8.5.1.	Feedback ports, VL, RS232, USB, Analog Input	27				
	8.5.2.	Digital Inputs/Outputs, STO	27				
	8.5.3.	EtherCAT or CAN Communication	27				
	8.5.4.	COMRET to PE Connection	27				
8.6.	Powe	r Conductors PCB layout	28				
Chapter !	9: V	Viring	29				

9.1. 9.2.		Legendd Bee Connection Diagram	
5.2.	THE GOI	d bee Connection Diagram	50
		nnections	
10.1.		Power	
400		Motor Power Connections	
10.2.	Main Po 10.2.1.	ower and Control Connector	
	10.2.1.		
	10.2.2.		
	10.2.5.	10.2.3.1. Dual Power Supply Topology	
		10.2.3.2. Single Power Supply Topology (VP+ < 40VDC)	
	10.2.4.		
	10.2.4.	10.2.4.1. Dual Power Supply Topology	
10.2	و ماله م	10.2.4.2. Single Power Supply Topology (VP+ < 95VDC)	
10.3.		Port A	
	10.5.1.	10.3.1.1. Incremental Encoder	
		10.3.1.2. Absolute Serial Encoder	
		10.3.1.3. Hall Sensors	
	10.3.2.		
	10.5.2.	10.3.2.1. Incremental Encoder	
		10.3.2.2. Interpolated Analog Encoder	
		10.3.2.3. Resolver	
	10.3.3.		
10.4.		onnector (MAIN)	
10.4.	10.4.1.	Digital Inputs	
	10.4.2.	Digital Outputs	
	10.4.3.		
	10.4.4.	Analog Input	
	10.4.5.		
	10.4.5.	10.4.5.1. Interface	
		10.4.5.2. CAN Layout	
	10.4.6.	RS232	
10.5.		AT Module	
10.5.	10.5.1.		
		10.5.1.1. ECT2 connector	
		10.5.1.2 FCT1 connector	

		10.5.1.3. ECT3 Connector	74
		10.5.1.4. 3.3V Connector	74
	10.5.2.	EtherCAT Communication	75
	10.5.3.	USB 2.0 Communication (for EtherCAT model only)	77
Chapter	11: Pov	wering Up	78
11.1.	Initializi	ing the System	78
11.2.	Heat Di	ssipation	79
		Heat Dissipation Data	
	11.2.2.	How to Use the Chart	82
Chapter	12: Din	nensions	83
12.1.	EtherC/	AT without Heatsink	83
12.2.	EtherC/	AT with Heatsink	84
12.3.	CAN wit	thout Heatsink	85
12.4.	CAN wit	th Heatsink	86
Chapter	13: Acc	cessories	87
		ories Heat Sink Dimensions	

Chapter 1: This Installation Guide

This installation Guide details the technical data, pinouts, and power connectivity of the Gold Bee. For a comprehensive detailed description of the functions and connections of the drive, refer to the Gold Board Level Module Hardware Manual.

Chapter 2: Safety Information

In order to achieve the optimum, safe operation of the Gold Bee, it is imperative that you implement the safety procedures included in this installation guide. This information is provided to protect you and to keep your work area safe when operating the Gold Bee and accompanying equipment.

Please read this chapter carefully before you begin the installation process.

Before you start, ensure that all system components are connected to earth ground. Electrical safety is provided through a low-resistance earth connection.

Only qualified personnel may install, adjust, maintain and repair the servo drive. A qualified person has the knowledge and authorization to perform tasks such as transporting, assembling, installing, commissioning and operating motors.

The Gold Bee contains electrostatic-sensitive components that can be damaged if handled incorrectly. To prevent any electrostatic damage, avoid contact with highly insulating materials, such as plastic film and synthetic fabrics. Place the product on a conductive surface and ground yourself in order to discharge any possible static electricity build-up.

To avoid any potential hazards that may cause severe personal injury or damage to the product during operation, keep all covers and cabinet doors shut.

The following safety symbols are used in this and all Elmo Motion Control manuals:

Warning:

This information is needed to avoid a safety hazard, which might cause bodily injury or death as a result of incorrect operation.

Caution:

This information is necessary to prevent bodily injury, damage to the product or to other equipment.

Important:

Identifies information that is critical for successful application and understanding of the product.

2.1. Warnings

- To avoid electric arcing and hazards to personnel and electrical contacts, never connect/disconnect the servo drive while the power source is on.
- Power cables can carry a high voltage, even when the motor is not in motion. Disconnect the Gold Bee from all voltage sources before servicing.
- The high voltage products within the Gold Line range contain grounding conduits for electric current protection. Any disruption to these conduits may cause the instrument to become hot (live) and dangerous.
- After shutting off the power and removing the power source from your equipment, wait at least 3 minutes before touching or disconnecting parts of the equipment that are normally loaded with electrical charges (such as capacitors or contacts). Measuring the electrical contact points with a meter, before touching the equipment, is recommended.

2.2. Cautions

- The maximum DC power supply connected to the instrument must comply with the parameters outlined in this guide.
- When connecting the Gold Bee to an approved control supply, connect it through a line that
 is separated from hazardous live voltages using reinforced or double insulation in
 accordance with approved safety standards.
- Before switching on the Gold Bee, verify that all safety precautions have been observed and that the installation procedures in this manual have been followed.
- Make sure that the Safe Torque Off is operational

2.3. Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalog description. All Elmo drives are warranted for a period of 12 months from the date of shipment. No other warranties, expressed or implied — and including a warranty of merchantability and fitness for a particular purpose — extend beyond this warranty.

Chapter 3: Product Description

The Gold Bee is an advanced high power density servo drive, delivering up to **5.6 kW power** in a 12.6 cm^3 (0.769 in³) compact package (35 x 30 x 11.5 mm or 1.38" x 1.18" x 0.45"). The Gold Bee is designed to be mounted on a PCB by soldering its pins directly to the PCB.

This advanced, high power density servo drive provides top performance, advanced networking and built-in safety, as well as a fully featured motion controller and local intelligence. Power to the Gold Bee is provided by a DC power source which is isolated from the Mains. The Gold Bee can operate with single or dual power supplies. If separation between the main DC power source and a control supply is required, then a control supply (isolated from the Mains) is required.

The drive can operate as a stand-alone device or as part of a multi-axis system in a distributed configuration on a real-time network.

The Gold Bee drive is easily set up and tuned using the Elmo Application Studio (EASII) software tools. As part of the Gold product line, it is fully programmable with the Elmo motion control language. For more information about software tools refer to the Elmo Application Studio (EASII) User Guide.

The Gold Bee is available in a variety of models. There are a number of possible options; multiple power rating, various communications, and feedback.

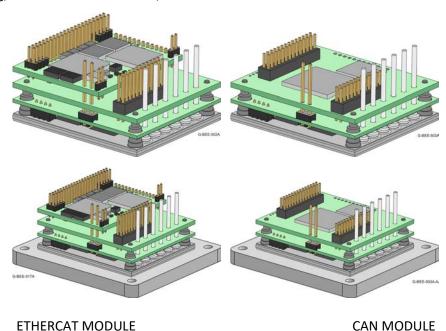


Figure 1: Difference between 3-Tier CAN and 4-Tier EtherCAT modules with/without Heatsink

Within the variety of models offered, the CAN and EtherCAT versions are physically different in that the CAN version has three tiers, whereas the EtherCAT version has four tiers, as shown in Figure 1.

Optionally, where necessary, Elmo offers two external heat sinks (Catalog number: G-TWIHSFINS01, and G-TWIHSFLAT01) which should be ordered separately. Refer to the section 7.1 Mounting the Optional Acessories Heat Sinks for details of installing the heat sinks.

Chapter 4: Technical Information

Note:

It should be noted that for all models, the Max Output current is guaranteed for $T_{\mbox{\scriptsize Heat-Sink}}$ <85°C

4.1. Physical Specifications

Feature	Units	All Types
Weight without Heatsink	g (oz)	EtherCAT Version: 22.2 g (0.78 oz) CAN Version: 18.6 g (0.66 oz)
Weight with Heatsink	g (oz)	EtherCAT Version: 43.2 g (1.52 oz) CAN Version: 39.6 g (1.40 oz)
EtherCAT Version Dimension without Heatsink		35 x 30 x 14.4 mm (1.38" x 1.18" x 0.57")
CAN Version Dimension without Heatsink	mm (in)	35 x 30 x 11.5 mm (1.38" x 1.18" x 0.45")
EtherCAT Version Dimension with Heatsink	111111 (111)	47 x 41.3 x 18.4 mm (1.85" x 1.63" x 0.72")
CAN Version Dimension with Heatsink		47 x 41.3 x 15.5 mm (1.85" x 1.63" x 0.61")
Mounting method		PCB mount
IP		IP00

4.2. 60V and 100V Models Technical Data

Feature	Units	30/60	1/100	3/100	6/100	10/100	15/100	25/100
Minimum supply voltage	VDC	8				10		
Nominal supply voltage	VDC	48				85		
Maximum supply voltage	VDC	55	55 95					
Maximum continuous power output	W	1370	80	235	470	800	1125	2000
Efficiency at rated power (at nominal conditions)	%	> 99						
Maximum output voltage		Up to 96% of DC bus voltage						
Ic, Amplitude sinusoidal/DC continuous current	А	30	1	3	6	10	15	25
Sinusoidal continuous RMS current limit (Ic)	А	21	0.7	2.1	4.2	7.1	10	17.7
Peak current limit	Α		2 x lc					

Table 1: 60V and 100V Models Technical Data

4.3. 200V Models Technical Data

Feature	Units	3/200	6/200	10/200
Minimum supply voltage	VDC		20	
Nominal supply voltage	VDC		170	
Maximum supply voltage	VDC	195		
Maximum continuous power output	W	485	975	1650
Efficiency at rated power (at nominal conditions)	%	> 99		
Maximum output voltage		Up to 96% of DC bus voltage		
Ic, Amplitude sinusoidal/DC continuous current	А	3	6	10
Sinusoidal continuous RMS current limit (Ic)	А	2.1	4.2	7.1
Peak current limit	А		2 x lc	

Table 2: 200V Models Technical Data

4.4. R Type Technical Data

Feature	Units	R50/60	R80/80	R50/100	R70/100	R45/150	R15/200	R35/200
Minimum supply voltage	VDC	8	10	10	10	12	20	20
Nominal supply voltage	VDC	48	65	85	85	115	170	170
Maximum supply voltage	VDC	55	75	95	95	135	195	195
Maximum continuous Electrical power output	kW	2.3	5	4.0	5.6	5	2.5	5.6
Efficiency at rated power (at nominal conditions)	%		> 99					
Maximum output voltage		Up to 96% of DC bus voltage						
Amplitude sinusoidal/D C continuous current	А	50	80	50	70	45	15	35
Sinusoidal continuous RMS current limit (Ic)	А	35.3	56.5	35.3	49.5	32	10.6	24.7

Table 3: R Type Models Technical Data

4.5. Control Supply Input Voltage (VL)

The Control Supply input voltage (VL) must be either SELV or PELV rated.

Feature	Unit	Details					
Standard CAN							
Input range for G-BEEXXX/YYYSZ(Blank)	V	12 – 40					
Input range for G-BEEXXX/YYYSZS or H	V	12 – 95					
24V Control supply input power consumption with encoder up to 200mA@5V	W	<2.5					
ETHERCAT							
Input range for G-BEEXXX/YYYEZ(Blank)	V	14 – 40					
Input range for G-BEEXXX/YYYEZS or H	V	12 – 95					
24V Control supply input power consumption with encoder up to 200mA@5V	W	<4					

4.6. Product Features

Main Feature	Details	Presence / No.
STO	5V Logic Level, Opto isolated from the Control section	٧
Digital Input Option	5V Logic Level (Internally connected to COMRET)	6
Digital Output	5V logic (Internally connected to COMRET)	2
Option	3.3V logic (Internally connected to COMRET)	2
Analog Input	Differential ±10V	1
	Single Ended	1
Feedback	Standard Port A, B, & C	٧
Communication	USB (only for EtherCAT version)	٧
Option	EtherCAT or	٧
	CAN	٧
	RS232 TTL level	٧
	Standard RS232	٧

4.7. Environmental Conditions

You can guarantee the safe operation of the Gold Bee by ensuring that it is installed in an appropriate environment. Section 4.7.1 describes the extended environmental conditions. However, the Functional Safety for STO of the ExtrlQ series servo drives is certified according to the environmental conditions in section 4.7.2.

Warning: During operation the Gold Bee becomes hot to the touch (the heatsink and wires may heat up to 92 °C). Care should be taken when handling it.

Caution:

The Gold Bee dissipates its heat by convection or by conduction. The maximum ambient operating temperature of 70 $^{\circ}$ C (158 $^{\circ}$ F) must not be exceeded.

4.7.1. ExtrIQ Conditions

Feature	Operation Conditions	Range		
Ambient Temper	ature Range	-40 °C to +70 °C (-40 °F to +158 °F)		
Storage temperat	ure	-40 °C to +85 °C (-40 °F to +185 °F)		
Altitude	Non-operating conditions	Unlimited		
	Operating conditions	-400 m to 12,000 m (-1312 to 39370 feet)		
Maximum Non-operating conditions Humidity		Up to 95% relative humidity non-condensing at 35 °C (95 °F)		
	Operating conditions	Up to 95% relative humidity non- condensing at 25 °C (77 °F), up to 90% relative humidity non-condensing at 42 °C (108 °F)		
Vibration	Operating conditions	20 Hz to 2,000 Hz, 14.6 g		
Mechanical	Non-operating conditions	±40g; Half sine, 11 msec		
Shock	Operating conditions	±20g; Half sine, 11 msec		
Protection level		IP00		

4.7.2. ExtrIQ Series Environmental Conditions for STO

The ExtrIQ series of drives with STO support the following extended environmental conditions.

Feature	Details
Operating ambient temperature	0 °C to +50 °C (32 °F to +122 °F)
Storage temperature	-40 °C to +85 °C (-40 °F to +185 °F)
Maximum non-condensing humidity according to IEC60068-2-78	95%
Maximum Operating Altitude	2,000 m (6562 feet) It should be noted that servo drives capable of higher operating altitudes are available on request.
Mechanical Shock according to IEC60068-2-27	15g / 11ms Half Sine
Vibration according to IEC60068-2-6	5 Hz ≤ f ≤ 10 Hz: ±10mm 10 Hz ≤ f ≤ 57 Hz: 4G 57 Hz ≤ f ≤ 500 Hz:5G

Chapter 5: Standards and Certification

5.1. Functional Safety

Standard	Item	
IEC 61800-5-2:2017	Adjustable speed electrical power drive systems – Safety requirements – Functional	
EN ISO 13849-1:2015	Safety of machinery — Safety-related parts of control systems.	
EN 61508-1:2010	Functional safety of electrical/electronic/ programmable electronic safety-related systems	
EN 61508-2:2010	Functional safety of electrical/electronic/ programmable electronic safety-related systems	
EN 61508-3:2010	Functional safety of electrical/electronic/ programmable electronic safety-related systems	

5.2. Electrical Safety

Specification	Details
Recognized UL 61800-5-1	Adjustable speed electrical power drive systems: Safety requirements – Electrical, thermal and energy
CSA C22.2 NO. 274-17	Adjustable speed drives

5.3. Electromagnetic Compatibility

Specification	Details	
EN 61800-3:2004/A1:2011	Adjustable speed electrical power drive systems Part 3: EMC requirements and specific test methods	
EN 61800-5-2: 2017 Annex E	Adjustable speed electrical power drive systems Part 5-2: Safety requirements – Functional	

5.4. Environmental

Specification	Details	
IEC60068-2-78	Damp heat, steady state	
IEC60068-2-6	Vibration (sinusoidal)	
IEC60068-2-2	Dry heat	
IEC60068-2-27 Shock		

5.5. Other Compliant Standards

For other compliant standards refer to the

MAN-G-Board Level Modules Hardware Manual section 17.7 or refer to the Elmo website:

https://www.elmomc.com/capabilities/standards-compliance/gold-family/

5.6. CE Declaration

Refer to the complete EC Declaration of Conformity available on the internet at:

https://www.elmomc.com/wp-content/uploads/dlm_uploads/2018/05/Gold-Line-CE-Declaration-of-Conformity.pdf.

5.7. Dual Use

No export license is required for the Gold Line products signified with the suffix Q in the Part Number.

The operating frequency of the Gold Line products is "factory limited" to \leq 599 Hz, and therefore complies with the EU Dual Use Regulation 428/2009, 3A225, and the US Dual Use regulation EAR ECCN# 3A225.

This statement applies to all identical specimens and will become invalid if a change is made in the firmware.

Chapter 6: Unpacking the Drive Components

Before you begin working with the Gold Bee, verify that you have all of its components, as follows:

- The Gold Bee servo drive
- The Elmo Application Studio (EASII) software and software manual

The Gold Bee is shipped in a cardboard box with Styrofoam protection.

To unpack the Gold Bee:

- 1. Carefully remove the servo drive from the box and the Styrofoam.
- 2. Check the drive to ensure that there is no visible damage to the instrument. If any damage has occurred, report it immediately to the carrier that delivered your drive.
- 3. To ensure that the Gold Bee you have unpacked is the appropriate type for your requirements, locate the part number sticker on the side of the Gold Bee. It looks like this:

- 4. Verify that the Gold Bee type is the one that you ordered and ensure that the voltage meets your specific requirements.
 - The part number at the top provides the type designation. Refer to the appropriate part number in the section Catalog Number at the beginning of the installation guide.

Chapter 7: Mounting the Gold Bee

The Gold Bee was designed for mounting on a printed circuit board (PCB) via 1.27 mm pitch 0.40 mm square pins, 2 mm pitch 0.51 mm square pins and 3.65 mm pitch 1.02 mm round pins. When integrating the Gold Bee into a device, be sure to leave about 1 cm (0.4") outward from the heatsink to enable free air convection around the drive. We recommend that the Gold Bee be soldered directly to the board. If the PCB is enclosed in a metal chassis, we recommend that the Gold Bee be screw-mounted to it as well to help with heat dissipation. The Gold Bee has screw-mount holes on each corner of the heat-sink for this purpose - see below

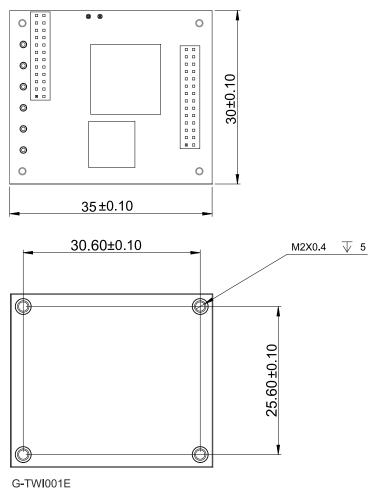


Figure 2: Gold Bee CAN Version Dimensions1

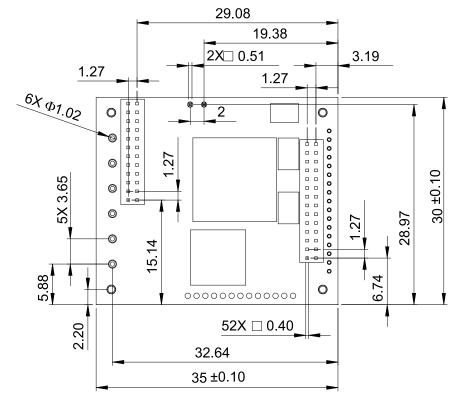


Figure 3: Gold Bee CAN Version Dimensions2

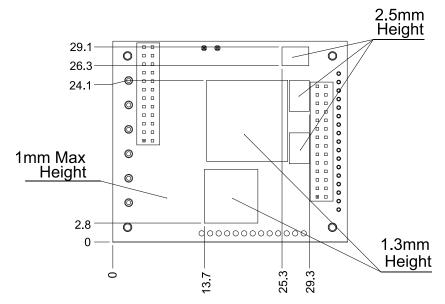
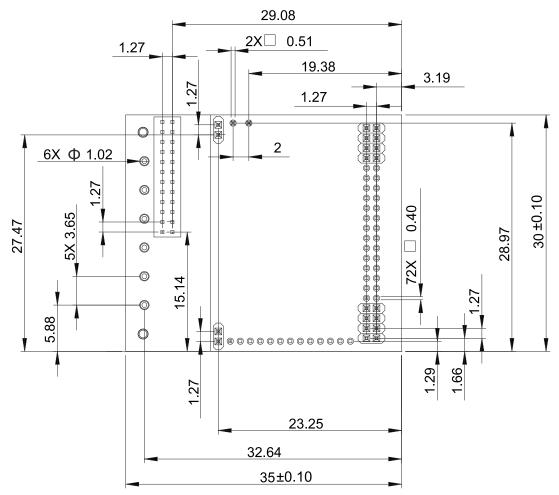
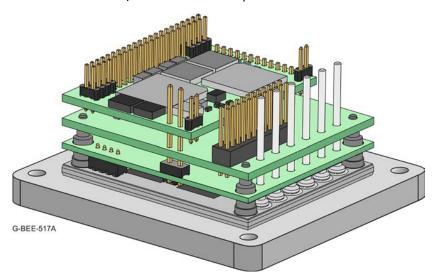
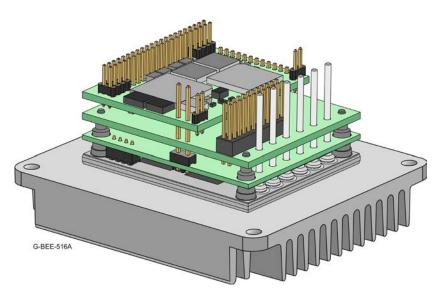



Figure 4: Gold Bee CAN Version Dimensions3




Figure 5: Gold Bee EtherCAT Version Dimensions

7.1. Mounting the Optional Acessories Heat Sinks

There are two optional heat sinks, available as accessory kits (The model **G-BEEXXX/YYYZZH** is integrated with the Flat Heatsink P/N G-TWIHSFLAT01):

Flat Heat Sink (P/N G-TWIHSFLAT01)

Fins Heat Sink (P/N G-TWIHSFINS01)

The optional heat sink must be screwed to the lower surface of the Gold Bee.

To mount the accessory heatsink (Not avalible for the option G-BEEXXX/YYYZZH):

- 1. Mount the heat sink under the base of the Gold Bee.
- 2. Place the Thermal foil (enclosed in the heat sink accessories kit) between the lower surface of the servo drive, and the upper surface of the heat sink.
- 3. Use four M2 screws (enclosed in the heat sink accessories kit) to secure the heat sink under the servo drive.
- 4. Tighten the screws to the relevent torque force applicable to an M2 stainless steel A2 screw.

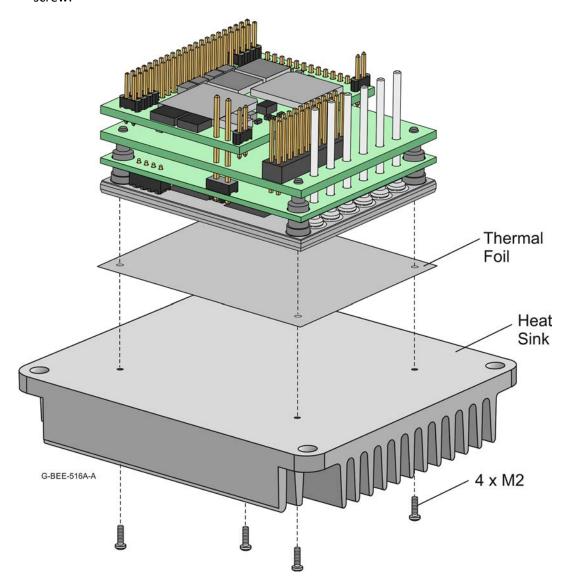


Figure 6: Mount the Heat Sink and Thermal Foil to the Gold Bee

7.2. Mounting Gold Bee to an External Heatsink

This option is only avaliable for G-BEEXXX/YYYZZH.

The selected heat sink must be screwed to the lower surface of the Gold Bee.

To mount the Gold Bee to an external heat sink:

- 1. Mount the heat sink under the base of the Gold Bee.
- 2. Place the Thermal foil (PN IMT-GTWIALHFLAT purchased from Elmo) between the lower surface of the servo drive, and the upper surface of the heat sink.
- 3. Use four M2.5 head cup Allen screws to secure the heat sink under the servo drive.
- 4. Tighten the screws to the relevent torque force applicable to an M2.5 stainless steel A2 screw.

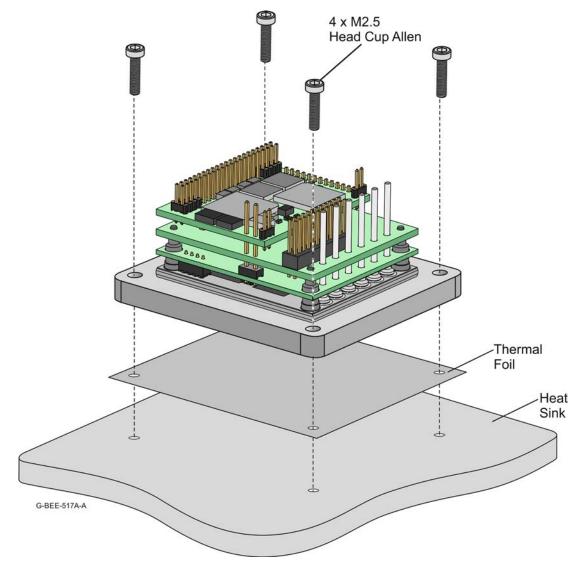


Figure 7: Mounting the Heat Sink and Thermal Foil to the Gold Bee

Chapter 8: Integrating the Gold Bee on a PCB

The Gold Bee is designed to be mounted on a PCB by soldering its pins directly to the PCB. Refer to Chapter 5 in the MAN-G-Board Level Modules Hardware Manual for further information.

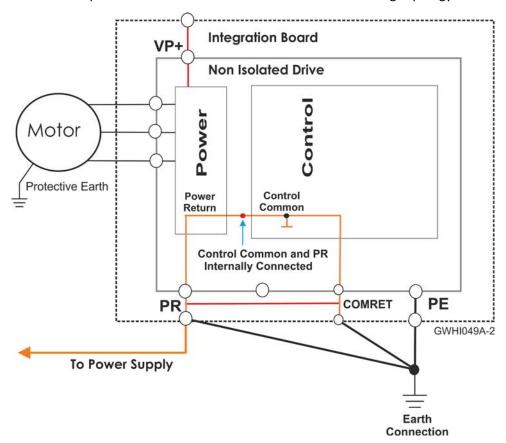
8.1. Power Returns (PR)

In the Gold Bee, the power stage and control stage are internally connected, and the negative node of the DC power bus is designates as PR

The maximum realistic Power Return is achieved using a plane, which connects between the Gold Drive and the power source. The impedance on this plane must be as low as possible to reduce the impedance between the "Grounds". This effectively reduces the levels of common mode differences, interferences, EMI etc.

8.2. COMRET

For details of the COMRET, refer to the section 5.4 in the MAN-G-Board Level Modules Hardware Manual.


8.3. Earth Connection (PE)

The PE (Earth connection) terminal is connected internally in the drive to the Gold Bee's chassis (heat-sink) which serves as an EMI common plane. Any other assembly metallic parts (such as the chassis) should also be connected to the PE.

Under normal operating conditions, the PE trace carries no current. The only time these traces carry current is under unusual conditions (such as when the device has become a potential shock or fire hazard while conducting external EMI interferences directly to ground). When connected properly the PE trace prevents these hazards from affecting the drive.

8.4. Power Return (PR), Common Return (COMRET) and Earth Connections (PE)

Safety regulations (UL61800-5-1, IEC61800-5-1, and UL508C) require that the servo drive, as a "stand alone", must withstand breakdown voltages of 2KV for the 200V models, and 1.7KV for the 100V models, between PE to PR. However, the connections between PE to PR and the COMRET are essential for the safe operation of the servo drive. Therefore the following topology must be used:

Figure 8: Gold Bee Earth Connections

The connections to PE are essential, but must be done externally to the integration board.

The COMRET should be connected to the PR in the Integration Board.

8.5. Logic and Control Cabling and Wiring

8.5.1. Feedback ports, VL, RS232, USB, Analog Input

For short distances between the drive and control, 0.5 to 1.0 m wires can be used and shielding is not required. For longer distances than 1.0 m and/or high EMI environment, shielded and twisted wires should be used. Drain wires should be connected to Elmo COMRET.

8.5.2. Digital Inputs/Outputs, STO

Wires can be always used, no need for twisting, no need for shielding.

8.5.3. EtherCAT or CAN Communication

Always use CAT5e cables.

8.5.4. COMRET to PE Connection

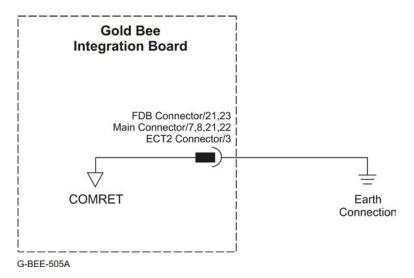


Figure 9: COMRET Connection to the PE

At least one COMRET pin (Figure 9) must be connected to the Protective Earth (PE).

Earthing the COMRET by connecting the Earth (PE) to the drive COMRET is mandatory to insure reliable operation, high noise immunity and rejection of voltage common mode interferences.

8.6. Power Conductors PCB layout

The PCB virtually divided into two zones; Power Zone, and Control & Communication Zone.

Power Zone

This area is dedicated to Power conductors only: VP+, PR, PE, VL+, VL-, and motor leads.

• Control and Communication Zone

This area of the PCB is dedicated to Control low level signals

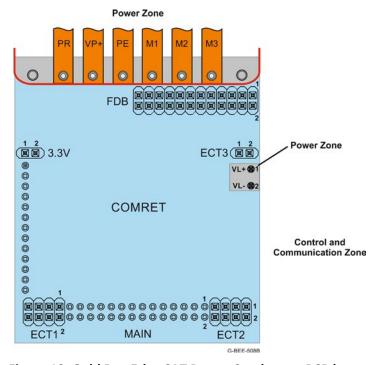
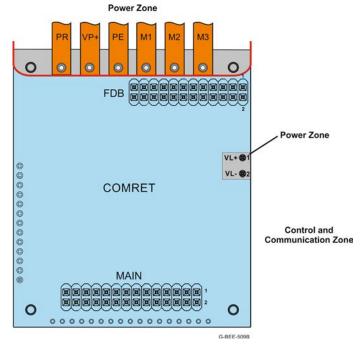
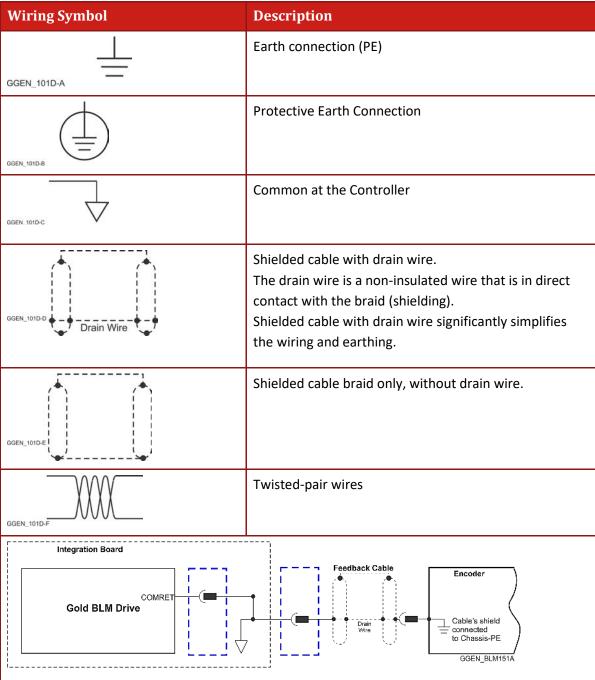


Figure 10: Gold Bee EtherCAT Power Conductors PCB layout




Figure 11: Gold Bee CAN Power Conductors PCB layout

For more details, refer to the section 5.4 in the MAN-G-Board Level Modules Hardware Manual.

Chapter 9: Wiring

9.1. Wiring Legend

The following table legend describes the wiring symbols detailed in all installation guides. All the wiring diagrams show wiring for D-TYPE connectors.

Encoder Earthing.

The cable's shield is connected to the chassis (PE) in the connector.

Earthing the Encoder and connecting the Earth (PE) to the drive COMRET is mandatory to insure reliable operation, high noise immunity and rejection of voltage common mode interferences.

9.2. The Gold Bee Connection Diagram

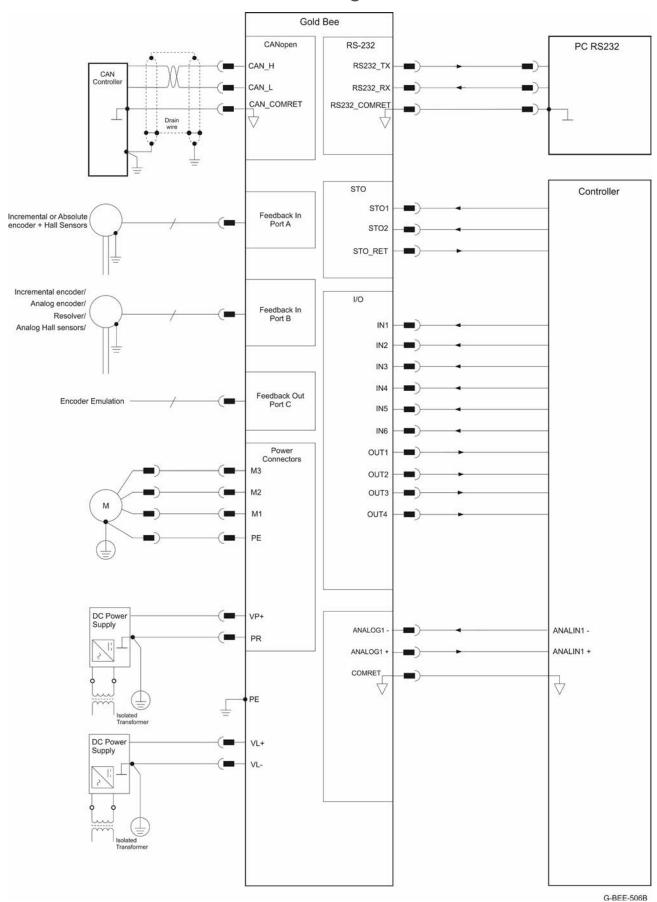


Figure 12: The Gold Bee CAN Connection Diagram

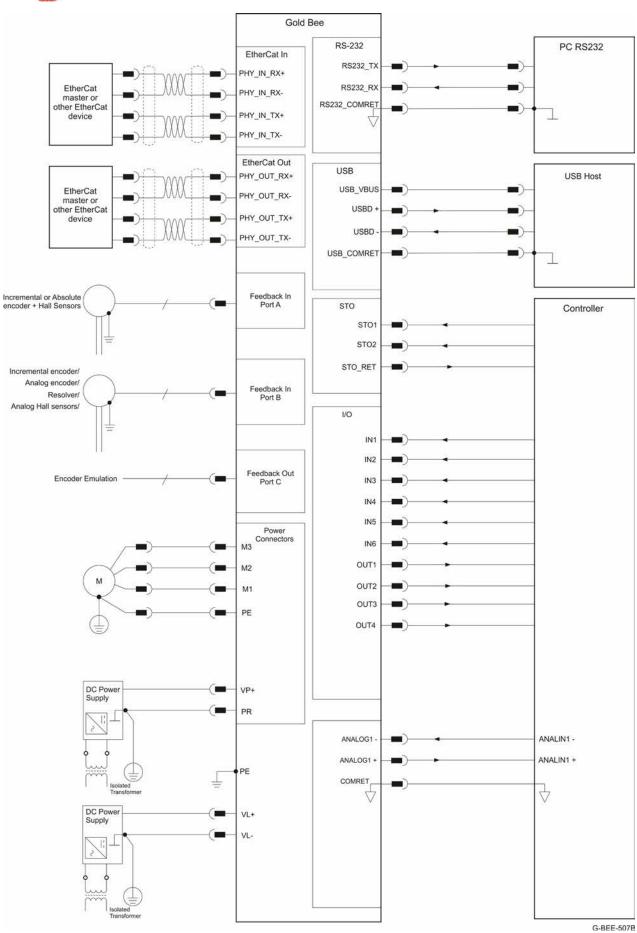
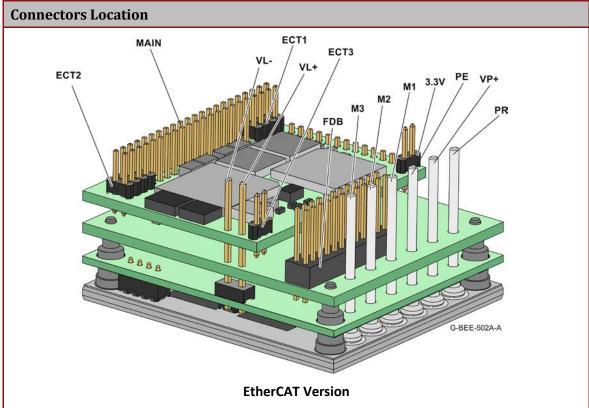
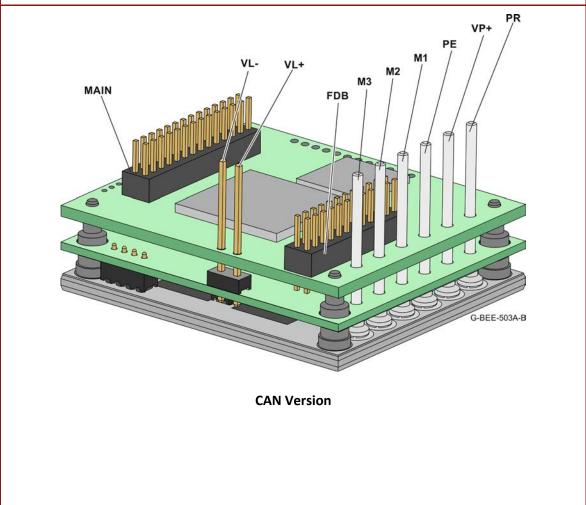


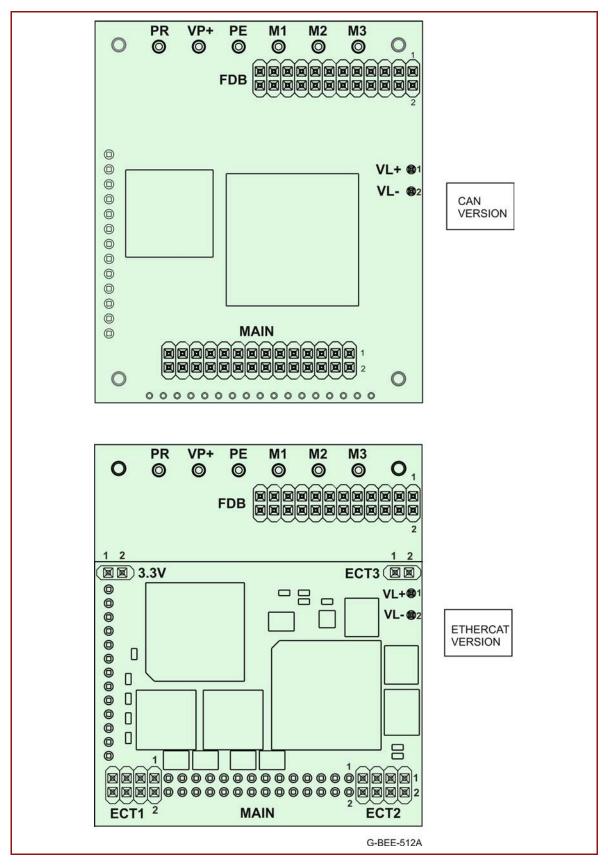
Figure 13: The Gold Bee EtherCAT Connection Diagram




Chapter 10: Connections

The Gold Bee has nine connectors.

Port	Pins	Туре	Function
FDB	2x12	1.27 mm pitch 0.40 mm sq.	Feedbacks, Digital Halls, Analog Inputs, Communications
М3	1x1		Motor power output 3
M2	1x1	3.65 mm pitch 1.02 mm round pins	Motor power output 2
M1	1x1		Motor power output 1
PE	1x1		Protective earth
PR	1x1		Power output return
VP+	1x1		DC Positive power input
VL+	1x2	2 mm pitch 0.51 mm sq.	VL+
VL-			VL-
MAIN	2x14	1.27 mm pitch 0.40 mm sq.	I/O, LEDs, STO,
			CAN or EtherCAT
ECT1	2x4	1.27 mm pitch 0.40 mm sq.	Available only for EtherCAT Version
ECT2	2x4	1.27 mm pitch 0.40 mm sq.	Available only for EtherCAT Version
ECT3	1x2	1.27 mm pitch 0.40 mm sq.	Available only for EtherCAT Version
3.3 V	1x2	1.27 mm pitch 0.40 mm sq.	Available only for EtherCAT Version
			Only for LEDS end Transformer



MAN-G-BEE (Ver. 2.008)

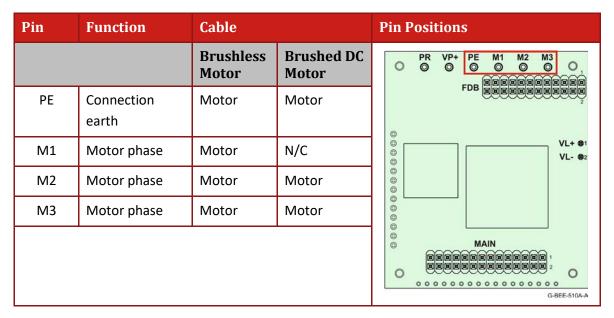


Table 4: Connector Types

10.1. Motor Power

This section describes the Motor Power.

For full details see Section 7.3 in the manual: MAN-G-Board Level Modules Hardware manual.

Table 5: Motor Connector

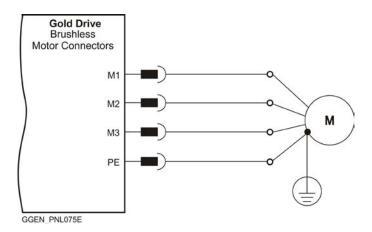


Figure 14: Brushless Motor Power Connection Diagram

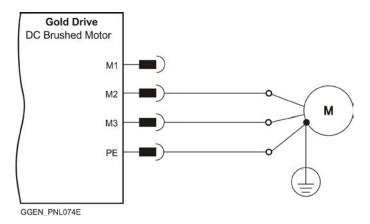
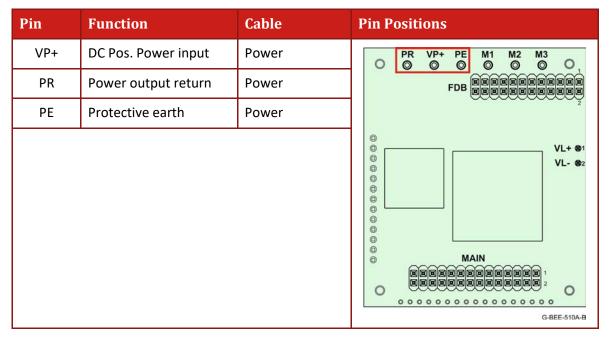


Figure 15: Brushed Motor Power Connection Diagram

10.1.1. **Motor Power Connections**


- 1. Ensure that the motor chassis is properly earthed.
- 2. Connect the appropriate wire from the Motor Power cables to the M1, M2, M3, and PE terminals on the Gold Bee.
 - Make sure not to bundle the wires.
 - The phase connection is arbitrary as Elmo Application Studio (EAS II) will establish the proper commutation automatically during setup. When tuning a number of drives, you can copy the setup file to the other drives and thus avoid tuning each drive separately. In this case the motor-phase order must be the same as on the first drive.
- 3. For high EMI environment, it is highly recommended to use a 4-wire shielded (not twisted) cable for the motor connection. The gauge is determined by the actual RMS current consumption of the motor.
 - Connect the cable shield to the closest ground connection at the motor end.
 - For better EMI performance, the shield should be connected to Earth Connection (heat sink mounting holes).

10.2. Main Power and Control Connector

This section describes the Main Power and the Control supply connector.

10.2.1. Main Power

The VDC isolated from the Mains DC power source is not included with the Gold Bee.

Table 6: Connector for Main Power

Connect the DC power cable to the VP+ and PR terminals on the main power connector.

To connect the Gold Bee to the DC power source:

- 1. The source of the VDC power supply must be isolated from the Mains.
- 2. Verify that the rectified VDC is indeed within the range of the drive.
- Connect the VP+ and PR wires to the terminals on the servo-drive.
 It is highly recommended to twist the two DC main power cables at intervals of 10 cm.
- 4. Connect the PE to the closest earth connection near the power supply.
- 5. Connect the PR to the closest earth connection near the power supply.
- 6. Before applying power, first verify the polarity of the connection.

10.2.2. **Control Supply**

Connect the VL+ and VL- pins on the Gold Bee in the manner described in the table and drawing below.

Pin	Signal	Function	Pin Positions
1	VL+	Control Supply Input	
2	VL-	Control Supply Return	
Inpu Pow (incl 2. Ethe Inpu Pow (incl	er consumuding up terCAT (G-B trange: 14 er consumuding up t	(G-BEEXXX/YYYSZ(Blank)) 2 – 40VDC aption: <2.5W o 200mA@5V for encoder) EEXXX/YYYEZ(Blank)) 4 – 40VDC aption: <4W o 200mA@5V for encoder) (G-BEEXXX/YYYSZS or H)	PR VP+ PE M1 M2 M3 O O O O O O 1 FDB REBERERE VL+ VL- VL- VL- VL- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pow (incl 4. Ethe Inpu Pow	er consum uding up t erCAT (G-B et range: 13 er consum	2 – 95VDC aption: <2.5W o 200mA@5V for encoder) EEXXX/YYYEZS or H) 2 – 95VDC aption: <4W o 200mA@5V for encoder)	©

Table 7: Control Supply Pins

Connect the VL+ and VL- terminals to the power supply Control Connector.

To connect the VL+ and VL- to the control supply:

- 1. The source of the control supply must be isolated from the Mains.
- 2. Connect the return (common) of the control supply source to the closest earth connection near the control supply source.
- 3. Connect the VL+ and VL- wires to the terminals on the servo-drive.
 - For short distances between the drive and control, 0.5 to 1.0 m wires can be used and shielding is not required. For longer distances than 1.0 m and/or high EMI environment, shielded and twisted wires should be used. Drain wires should be connected to Elmo COMRET.
- 4. Before applying power, first verify the polarity of the connection.
- Note: For VL 12 to 40VDC (G-BEEXXX/YYYZZ(Blank)) refer to section 10.2.3. For VL 12 to 95VDC (G-BEEXXX/YYYZZS or H) refer to section 10.2.4.

10.2.3. Control Supply Connections for G-BEEXXX/YYYZZ(Blank)

Note: This section is for VL 12 to 40VDC (G-BEEXXX/YYYZZ(Blank)).

For VL 12 to 95VDC (G-BEEXXX/YYYZZS or H) refer to section 10.2.4.

10.2.3.1. Dual Power Supply Topology

Two DC power sources isolated-from-the-mains are required:

- A main DC power source derived from the Mains, according to specification
- A control supply for the logic

10.2.3.1.1 Ordinary Option

This option describes an Ordinary power supply for Servo drives with sufficient internal capacitance and shunt regulator to handle power flow in both directions to-and-from the motor. The following figure describes this connection of main power and control power.

Note: The PR and the VL- are connected internally in the Gold Bee.

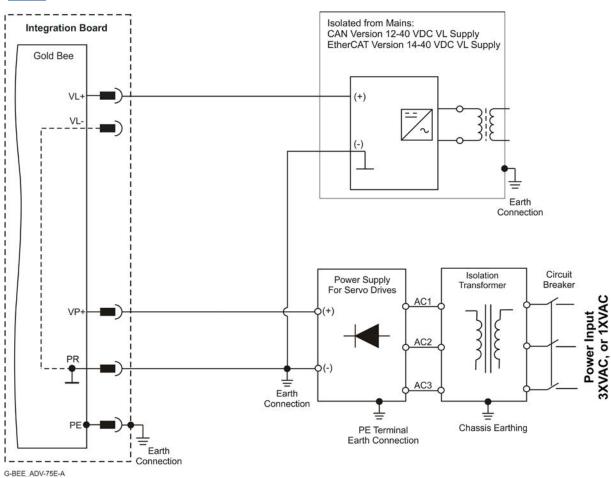


Figure 16: Ordinary Option: Separate VP and VL Power Supplies Connection Diagram

The (+) of the control power supply is connected to the VL+ terminal, while the (-) of the control power supply is connected directly to the (-) of the DC bus power supply. This connection avoids high current ground loops due to poor wiring (Figure 16).

10.2.3.1.2 SMPS Option

This option describes a topology with a main power without regeneration, but with limited Braking capabilities dependent on additional capacitance.

The C_{external} can be mounted on the Integration Board if there are no space limitations.

Minimum capacitance of the Power supply: Cexternal > "Drive's Rated Current" *20uF

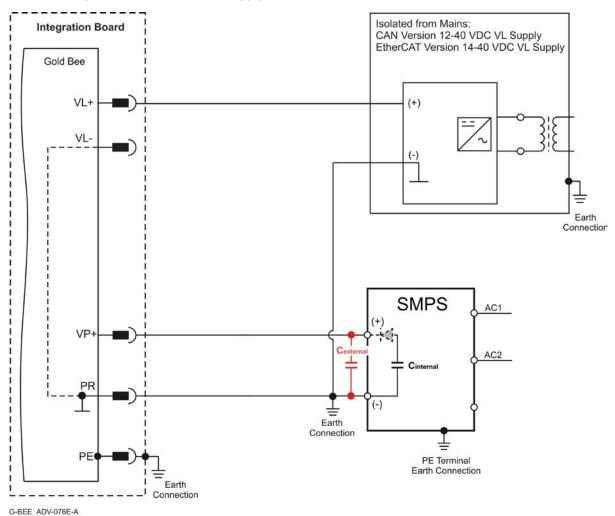


Figure 17: SMPS Option: Separate VP and VL Power Supplies Connection Diagram

The (+) of the control power supply is connected to the VL+ terminal, while the (-) of the control power supply is connected directly to the (-) of the DC bus power supply. This connection avoids high current ground loops due to poor wiring (Figure 17).

10.2.3.2. Single Power Supply Topology (VP+ < 40VDC)

A single power supply can be used to power both the main and control. For the CAN version power rating of minimum 12VDC to 40VDC, or minimum 14VDC to 40VDC for the EtherCAT version.

When regeneration or braking occurs, the DC bus may increase and may exceed the VL limit of over 40VDC, possibly causing the VL to fail. Under these conditions, you must install the Dual Power Supply described above in section 10.2.3.1.

10.2.3.2.1 Recommended Option

This option describes an Ordinary power supply for Servo drives with sufficient internal capacitance and shunt regulator to handle power flow in both directions to-and-from the motor. In this configuration the Gold Bee max operating voltage depends on the model, and is 55VDC, 75VDC, or 95VDC. However the DC bus must be limited to VP+ <40VDC to prevent failure of the VL supply.

The following figure describes this connection of main power and control.

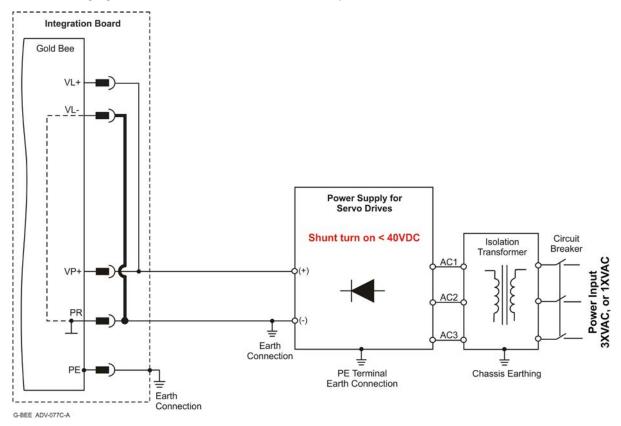


Figure 18: Recommended Single Power Supply (VP+<40V) Connection Diagram with VL+ Connected Internally

Note: This option is available for power supply up to 40VDC.

For applications where the recommended single power supply is used, the following conditions must apply:

- The "Shunt On" trip voltage in the power supply must be <40VDC
- If there is no shunt in the Power Supply the Over Voltage must be programmed using the drive software command XP[1]=38 (over-voltage set to 38V)
- Minimum capacitance of the Power supply: C_{Power_Supply} > Drive's Rated Current *20uF
- The VL- to PR is connected on the Integration Board (no external wiring)
- The VL- to PR connection must be as thick as possible, actually a Ground Plane is most preferable

10.2.3.2.2 SMPS Option

This option describes a main power and control topology without regeneration, but with limited Braking capabilities dependent on additional capacitance.

The C_{external} can be mounted on the Integration Board if there are no space limitations.

In this configuration the Gold Bee max operating voltage depends on the model, and is 55VDC, 75VDC, or 95VDC. However the DC bus must be limited to VP+ <40VDC to prevent failure of the VL supply.

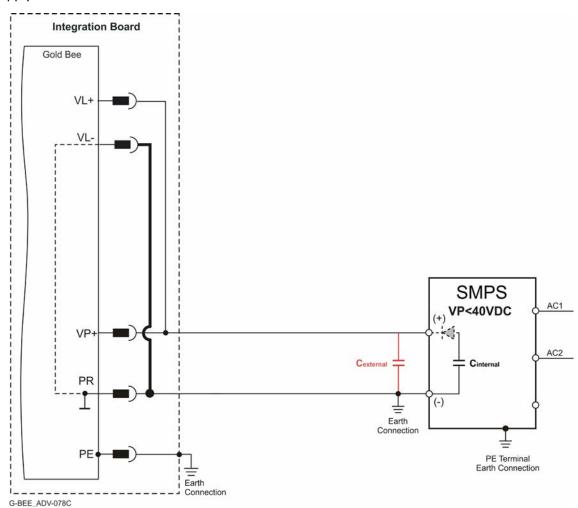


Figure 19: SMPS Single Power Supply (VP+<40V) Connection Diagram with VL+ Connected Internally

Note: This option is available for power supply up to 40VDC.

For applications where a SMPS single power supply is used, the following conditions must apply:

- External capacitance must be added on the DC bus
- The Over Voltage of the Gold Bee must be programmed using the drive software command XP[1]=38 (over-voltage set to 38V)
- The Minimum capacitance of the Power supply: Cexternal > "Drive's Rated Current" *20uF
- The VL- to PR is connected on the Integration Board (no external wiring)
- The VL- to PR connection must be as thick as possible, actually a "Ground Plane" is most preferable

10.2.3.2.3 Forbidden Option

Do NOT use the following wiring topology. Only connect the VL- to PR internally on the Integration Board.

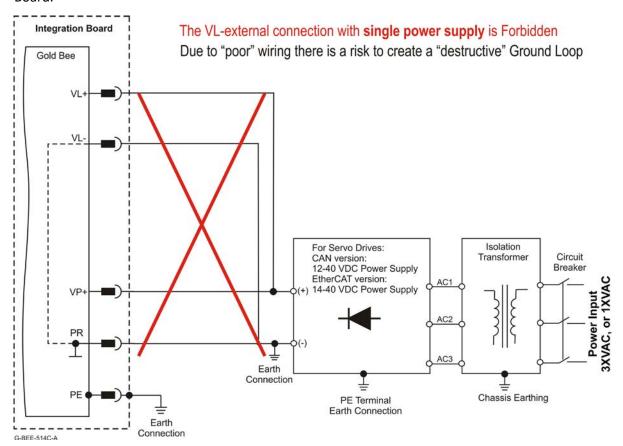


Figure 20: Forbidden Single Power Supply (<40V) Connection Diagram with VL+ Cable Connected Externally

10.2.4. Control Supply Connections for G-BEEXXX/YYYZZS or H

Note: This section is for VL 12 to 95VDC (G-BEEXXX/YYYZZS or H).

For VL 12 to 40VDC (G-BEEXXX/YYYZZ(Blank)) refer to section 10.2.3.

10.2.4.1. Dual Power Supply Topology

Two DC power sources isolated-from-the-mains are required:

- A main DC power source derived from the Mains, according to specification
- A control supply for the logic

10.2.4.1.1 Ordinary Option

This option describes an Ordinary power supply for Servo drives with sufficient internal capacitance and shunt regulator to handle power flow in both directions to-and-from the motor. The following figure describes this connection of main power and control power.

Note: The PR and the VL- are connected internally in the Gold Bee.

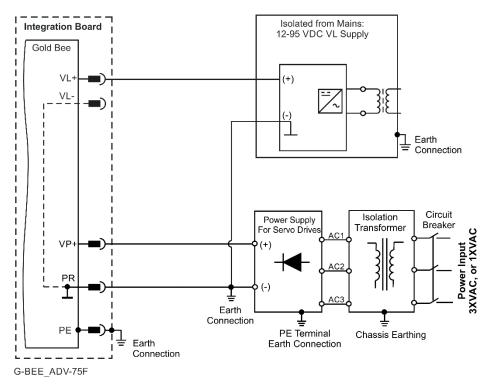


Figure 21: Ordinary Option: Separate VP and VL Power Supplies Connection Diagram

The (+) of the control power supply is connected to the VL+ terminal, while the (-) of the control power supply is connected directly to the (-) of the DC bus power supply. This connection avoids high current ground loops due to poor wiring (Figure 21).

10.2.4.1.2 SMPS Option

This option describes a topology with a main power without regeneration, but with limited Braking capabilities dependent on additional capacitance.

The C_{external} can be mounted on the Integration Board if there are no space limitations.

Minimum capacitance of the Power supply: Cexternal > "Drive's Rated Current" *20uF

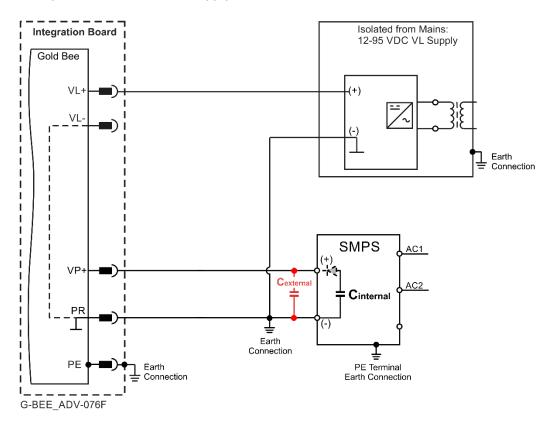


Figure 22: SMPS Option: Separate VP and VL Power Supplies Connection Diagram

The (+) of the control power supply is connected to the VL+ terminal, while the (-) of the control power supply is connected directly to the (-) of the DC bus power supply. This connection avoids high current ground loops due to poor wiring (Figure 22).

10.2.4.2. Single Power Supply Topology (VP+ < 95VDC)

A single power supply can be used to power both the main and control within the range of 12 to 95VDC.

10.2.4.2.1 Recommended Option

This option describes an Ordinary power supply for Servo drives with sufficient internal capacitance and shunt regulator to handle power flow in both directions to-and-from the motor. In the configuration of the 200V Gold Bee model, the max operating voltage is 195VDC, but the DC bus must be limited to VP+ <95VDC to prevent failure of the VL supply.

The following figure describes a single connection of main power and control.

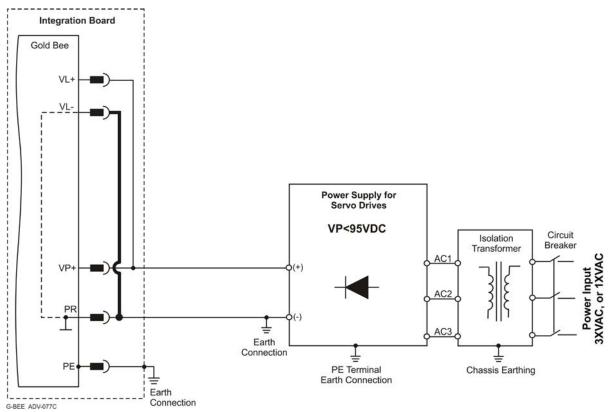


Figure 23: Recommended Single Power Supply (VP+<95V) Connection Diagram with VL+ Connected Internally

Note: This option is available for power supply up to 95VDC.

For applications where the recommended single power supply is used, the following conditions must apply:

- Minimum capacitance of the Power supply: C_{Power_Supply} > Drive's Rated Current *20uF
- The VL- to PR is connected on the Integration Board (no external wiring)
- The VL- to PR connection must be as thick as possible, actually a Ground Plane is most preferable

10.2.4.2.2 SMPS Option

This option describes a main power and control topology without regeneration, but with limited Braking capabilities dependent on additional capacitance.

The C_{external} can be mounted on the Integration Board if there are no space limitations.

In the configuration of the 200V Gold Bee model, the max operating voltage is 195VDC, but the DC bus must be limited to VP+ <95VDC to prevent failure of the VL supply.

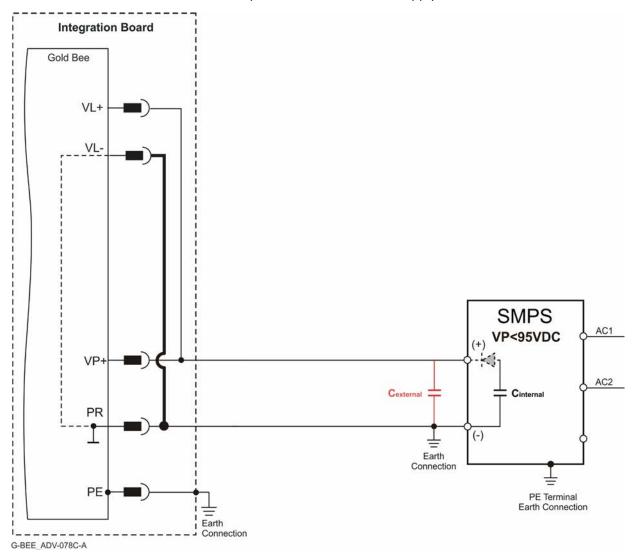


Figure 24: SMPS Single Power Supply (VP+<95V) Connection Diagram with VL+ Connected Internally

Note: This option is available for power supply up to 95VDC.

For applications where a SMPS single power supply is used, the following conditions must apply:

- External capacitance must be added on the DC bus
- The Minimum capacitance of the Power supply: Cexternal > "Drive's Rated Current" *20uF
- The VL- to PR is connected on the Integration Board (no external wiring)
- The VL- to PR connection must be as thick as possible, actually a "Ground Plane" is most preferable

10.2.4.2.3 Forbidden Option

Do NOT use the following wiring topology. Only connect the VL- to PR internally on the Integration Board.

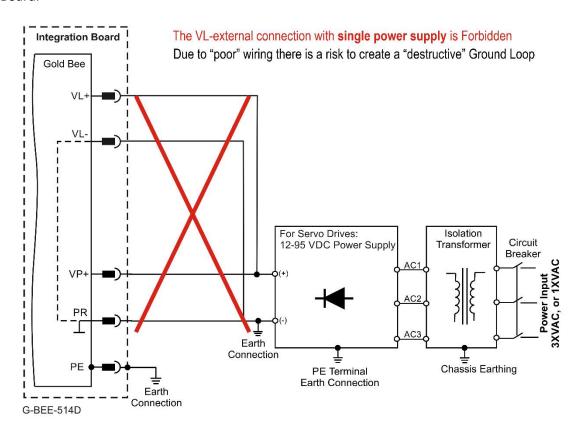
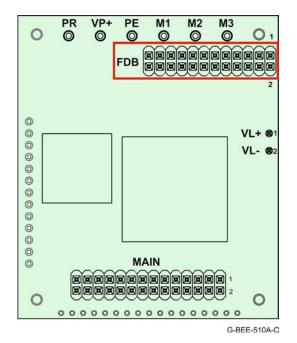
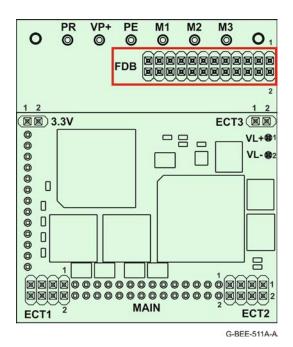




Figure 25: Forbidden Single Power Supply (<95V) Connection Diagram with VL+ Cable Connected Externally

10.3. Feedback Connector FDB

FDB Connector in the CAN option

FDB Connector in the EtherCAT option

Feedback A/B/C, Digital Halls – see Section 9.2 in the manual: MAN-G-Board Level Modules Hardware Manual.

Pin FDB	Signal	Function	
1	PortA_ENC_A+ /ABS_CLK+	Port A- channel A/ Absolute encoder clock+	
2	PortB_ENC_A-/SIN-	Port B - channel A complement	
3	PortA_ENC_A-/ABS_CLK-	Port A- channel A complement / Absolute encoder clock-	
4	PortB_ENC_A+/SIN+	Port B - channel A	
5	PortA_ENC_B+/ABS_DATA+	Port A - channel B/ Absolute encoder Data+	
6	PortB_ENC_B-/COS-	Port B - channel B complement	
7	PortA_ENC_B-/ABS_DATA-	Port A - channel B complement / Absolute encoder Data-	
8	PortB_ENC_B+/COS+	Port B - channel B	
9	PortA_ENC_INDEX+	Port A – index	
10	PortB_ENC_INDEX-/ANALOG_I-	Port B – index complement	
	RESOLVER_OUT-	Vref complement	
11	PortA_ENC_INDEX-	Port A - index complement	
12	PortB_ENC_INDEX+/ANALOG_I+	Port B – index	
	RESOLVER_OUT+	Vref	

Pin FDB	Signal	Function
13	НА	Hall sensor A input
14	PortC_ENCO_A-	Port C- channel A complement output
15	НВ	Hall sensor B input
16	PortC_ENCO_A+	Port C- channel A output
17	НС	Hall sensor C input
18	PortC_ENCO_B-	Port C - channel B complement output
19	+5VE	Encoder +5 V supply @ Limit 200 mA
20	PortC_ENCO_B+	Port C - channel B output
21	COMRET	Common return
22	PortC_ENCO_INDEX-	Port C - index complement output
23	COMRET	Common return
24	PortC_ENCO_INDEX+	Port C - index output

Table 8: Connector FDB – Feedback

10.3.1. Port A

Refer to section 10.3 in the MAN-G-Board Level Modules Hardware Manual for further details of the Port A connections.

10.3.1.1. Incremental Encoder

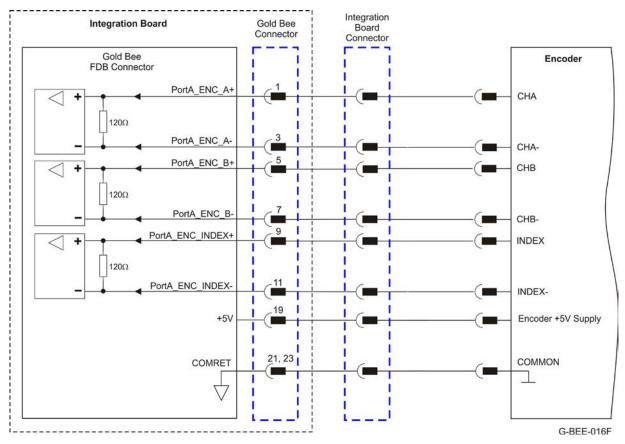


Figure 26: Port A Incremental Encoder Input - Recommended Connection Diagram

10.3.1.2. Absolute Serial Encoder

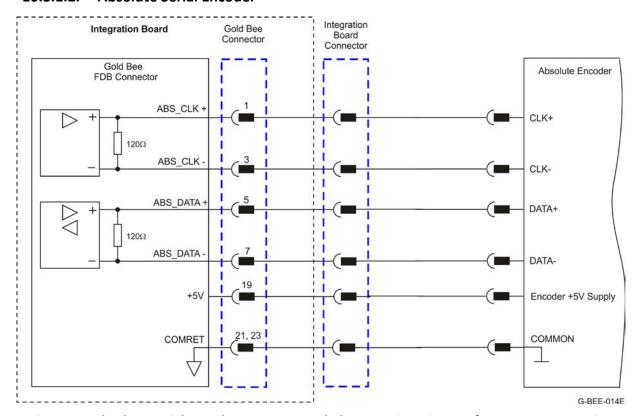


Figure 27: Absolute Serial Encoder – Recommended Connection Diagram for Sensors Supporting Data/Clock (e.g., Biss / SSI / EnDAT, etc.)

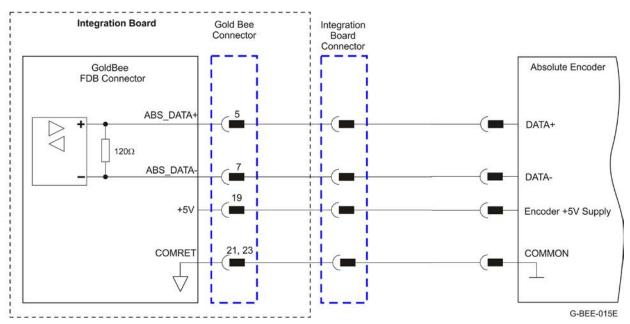
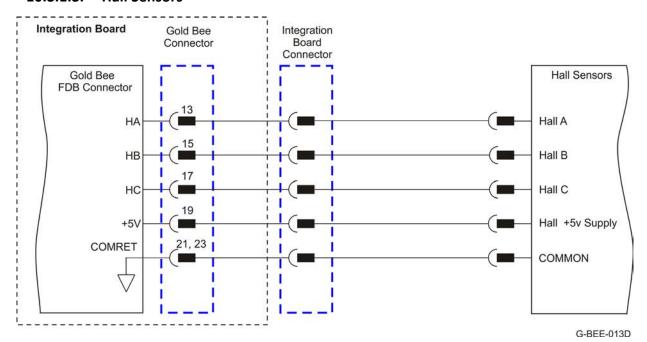



Figure 28: Absolute Serial Encoder – Recommended Connection Diagram for Sensors Supporting Data Line Only (NRZ types, e.g., Panasonic / Mitutoyo / etc.)

10.3.1.3. Hall Sensors

Figure 29: Hall Sensors Connection Diagram

10.3.2. Port B

Refer to section 10.4 in the MAN-G-Board Level Modules Hardware Manual for further details of the Port B connections.

10.3.2.1. Incremental Encoder

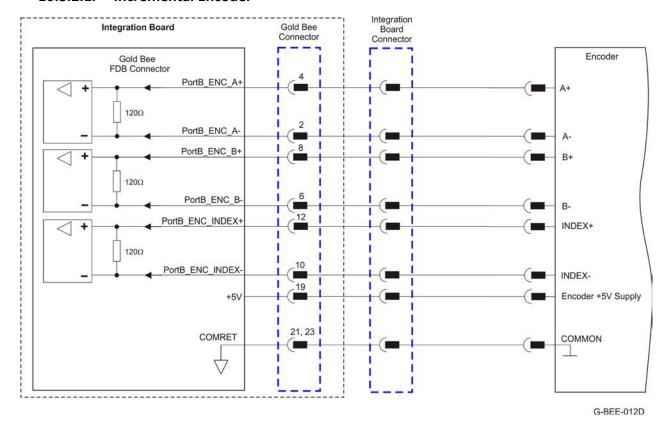


Figure 30: Port B Incremental Encoder Input – Recommended Connection Diagram

10.3.2.2. Interpolated Analog Encoder

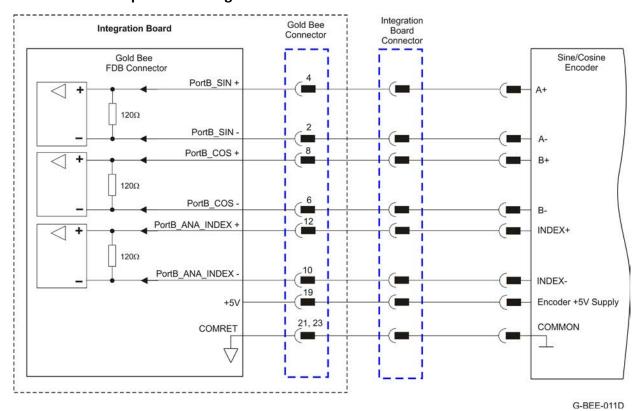


Figure 31: Port B - Interpolated Analog Encoder Connection Diagram

10.3.2.3. Resolver

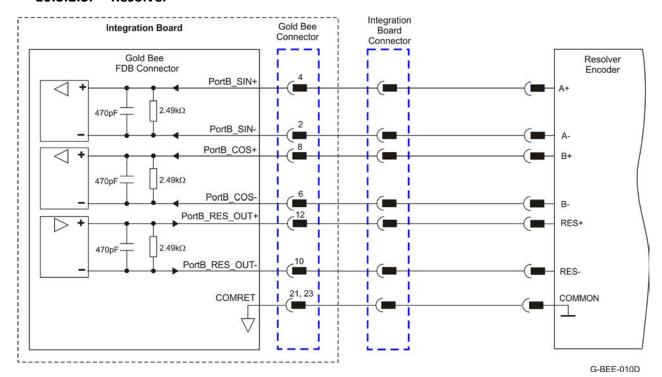


Figure 32: Port B – Resolver Connection Diagram

10.3.3. Port C - Emulated Encoder Output (FDB)

See Section 10.5 in the manual: MAN-G-Board Level Modules Hardware Manual for further details of Port C.

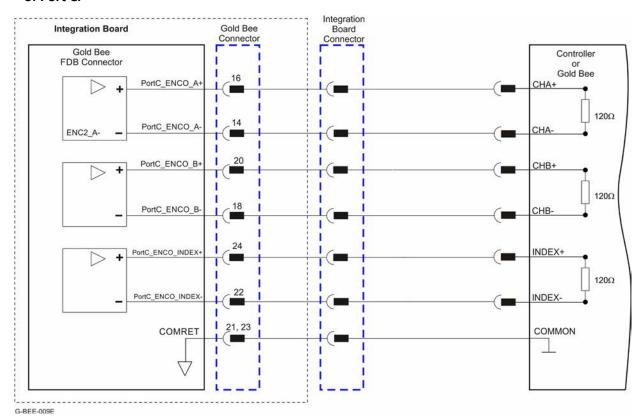
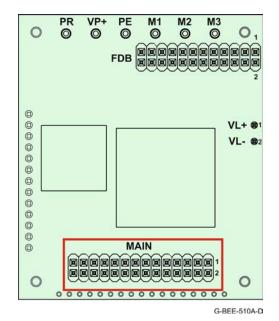



Figure 33: Emulated Encoder Differential Output - Recommended Connection Diagram

10.4. Main Connector (MAIN)

PR © M3 PE 0 0 0 0 FDB **⊠** 3.3V ECT3 000000000000000 080 VL+® 0 0 0 0 0 吕 MAIN ECT1 ECT2 G-BEE-511A-B

FDB Connector in the CAN option

FDB Connector in the EtherCAT option

Pin (MAIN)	Signal	Function			
1	CAN Version: CANH	CAN Version: CAN_H BUS Line (dominant high)			
	ECAT Version: LED_ET_ERR	ECT Version: EtherCAT status LED Error			
2	CAN Version: CANL	CAN Version: C	CAN Version: CAN_L BUS Line (dominant low)		
	ECAT Version: LED_ET_RUN	ECT Version: EtherCAT status LED Run			
3	RS232_TX_S	Standard RS232 transmit			
4	RS232_RX_S	Standard RS232 receive			
5	RS232_TX /SB_IN	There are two options for this pin:			
		Option 1:	TTL RS232 transmit (Default)		
		Option 2:	Serial Bus IN for extended I/O (refer to MAN-G-Board Level Modules Hardware manual) This option is only available for EtherCAT		

Pin (MAIN)	Signal	Function		
6	RS232_RX /SB_OUT	Option 1: T Option 2: S // (// // // // // // // // // // // /	TTL RS232 receive (default) Serial Bus output for extended I/O (refer to MAN-G-Board Level Modules Hardware manual) This option is only available for EtherCAT	
7	COMRET	Common return		
8	COMRET	Common return		
9	ANALOG1+	Analog input 1		There is no ANARET
10	ANALOG1-	Analog input 1 complement		(analog return) pin. Instead the COMRET pin used.
11	ANALOG_IN2	Analog input 2		
12	STO1	STO 1 input, opto isolated from control (COMRET)		ted from control
13	STO_RET	STO signal return. The two digital STO inputs are optically isolated from the other parts of the drive, and share one return line.		, ,
14	STO2	STO 2 input		
15	LED1	Bi-color indication output 1 (Cathode) Internal Resistor 1K Ω		
16	LED2	Bi-color indication output 2 (Cathode) Internal Resistor 1K Ω		
17	OUT4	Programmable ou (3.3V logic level)	Programmable output 4 (connected to COMRET) (3.3V logic level)	
18	OUT2	Programmable ou (5V logic level)	Programmable output 2 (connected to COMRET) (5V logic level)	
19	ОИТЗ	Programmable output 3 (connected to COMRET) (3.3V logic level)		
20	OUT1	Programmable output 1 (connected to COMRET) (5V logic level)		
21	COMRET	Common return		
22	COMRET	Common return	Common return	

Pin (MAIN)	Signal	Function	
23	IN6	Programmable digital input 6 (connected to COMRET) (5V logic level)	
24	IN5	Programmable digital input 5 (connected to COMRET) (5V logic level)	
25	IN4	Programmable digital input (connected to COMRET) (5V logic level)	
26	IN3	Programmable digital input 3 (connected to COMRET) (5V logic level)	
27	IN2	Programmable digital input 2 (connected to COMRET) (5V logic level)	
28	IN1	Programmable digital input 1 (connected to COMRET) (5V logic level)	

Table 9: Connector MAIN – I/O, STO, Analog, LEDs

LEDs

For full details on the LEDs, see Chapter 7, and section 12.2.1 in the in the MAN-G-Board Level Modules Hardware manual for full details.

STO (safety)

For full details on STO, see Chapter 9 in the in the MAN-G-Board Level Modules Hardware manual for full details.

For RS232, and Analog Input Wires

For short distances between the drive and control, 0.5 to 1.0 m wires can be used and shielding is not required. For longer distances than 1.0 m and/or high EMI environment, shielded and twisted wires should be used. Drain wires should be connected to Elmo COMRET.

For Digital Inputs/Outputs, STO

Wires can be always used, no need for twisting, no need for shielding.

For CAN Communication

Always use CAT5e cables.

10.4.1. **Digital Inputs**

The following table describes the electrical specification of the inputs IN1 and IN6:

Feature	Details	
Input Voltage (VIN)	0 to 6V	
V _{ih} min	2.2V	
V _{il} max	0.6V	
R ₁ Pull-up Resistor	If VT = 3.3V, R1<3.3KΩ	
	If VT = 5V, R1<10K Ω	
Minimum pulse width	> 250 µsec	
Execution time (all inputs): the time from application of voltage on input until execution is complete	0 < T < 250 μsec	
High-speed inputs – 1–6 minimum pulse width, in high-speed mode	T = 5 μ sec if the input functionality is set to latch/capture (index/strobe).	
	Note: Home mode is high-speed mode and can be used for fast capture and precise homing.	
Capture with differential input Port A, Port B Index	$T > 0.1~\mu sec$ if the differential input functionality is set to touch probe/capture (index/strobe).	

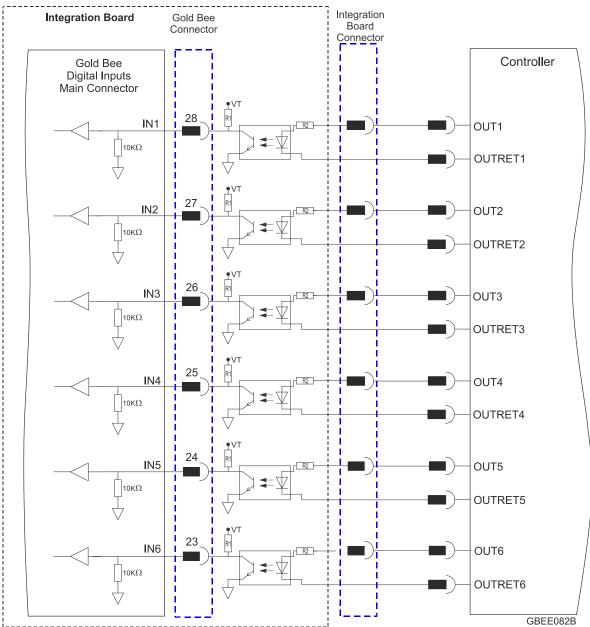


Figure 34: Digital Input 5V Logic level Mode Connection Diagram

Digital Outputs 10.4.2.

There are two types of Digital outputs:

- Out1 and Out2 5V Logic
- Out3 and Out4 3.3V Logic

The following table describes the electrical specification of the outputs OUT1 and OUT2:

Feature	Details
Type of output	5V Logic
Output Configuration	G-BEE 5V 500Ω External R _L
V _{OL} max of TTL Buffer (low level)	V _{out} (Low) ≤ 0.44V @ 8mA
V _{OH} min of TTL Buffer (High level)	V _{out} (High) >4.4V @ 8mA
Output current	$I_{out(\max)} = \frac{5V}{500\Omega + R_{L(external)}}$ Where: $V_{R_{L(High)}} = 5V - 500*I_{out(\max)}$
Example of connection to the opto-couplers	G-BEE V
T _{on} (time from low to high)	<1µsec
T _{off} (time from high to low)	<1µsec
Executable time	0 < T < 250 μsec

The following table describes the electrical specification of the outputs OUT3 and OUT4.

Feature	Details
Type of output	3.3V Logic
Output Configuration	G-BEE 3.3V 220Ω External R G-BEE-108A-B
V _{oL} max of TTL buffer(low level)	V _{out} (On) ≤ 0.4V @ 8mA
V _{он} min of TTL buffer (High level)	V _{out} (High) >2.9V @ 8mA
Output current	$I_{out(\max)} = \frac{3.3V}{220\Omega + R_{L(external)}}$ Where: $V_{R_{L(High)}} = 3.3V - 220*I_{out(\max)}$
Example of connection to the opto-couplers	$I_{out(max)} = \frac{3.3V - 2.0V}{220\Omega + 50\Omega} = 4.8 mA$
T _{on} (time from low to high)	<1usec
T _{off} (time from high to low)	<1usec
Executable time	0 < T < 250 μsec

MAN-G-BEE (Ver. 2.008)

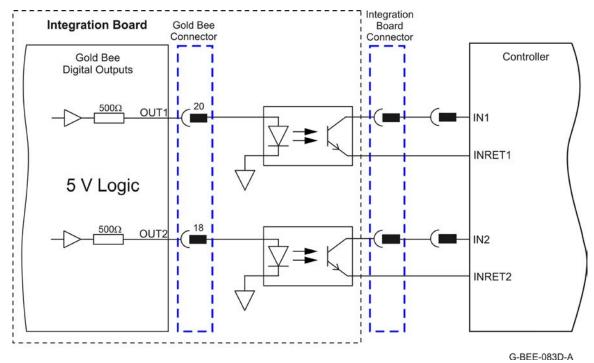


Figure 35: Digital Output 5V Logic Mode Connection Diagram

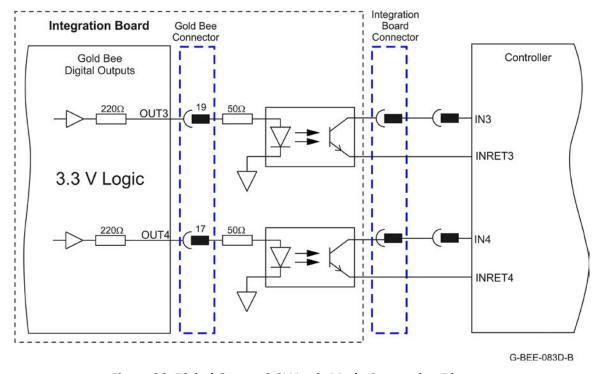


Figure 36: Digital Output 3.3V Logic Mode Connection Diagram

10.4.3. STO (Safe Torque Off)

For full details on STO, see Chapter 9 in the MAN-G-Board Level Modules Hardware manual.

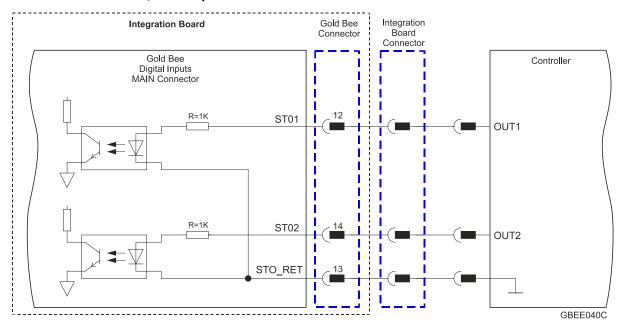


Figure 37: STO Input Connection – 5V Logic Level

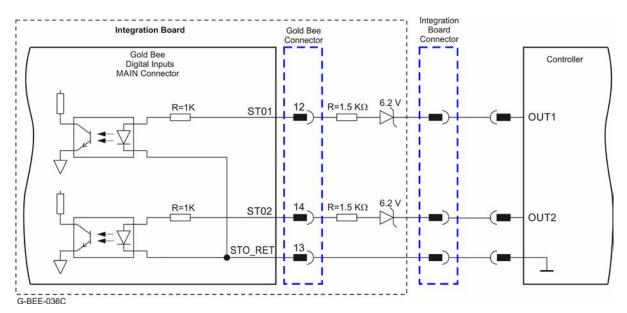


Figure 38: STO Input Connection – PLC (24V Logic)

10.4.4. Analog Input

For full details on Analog Inputs, see section 11.3 in the MAN-G-Board Level Modules Hardware manual.

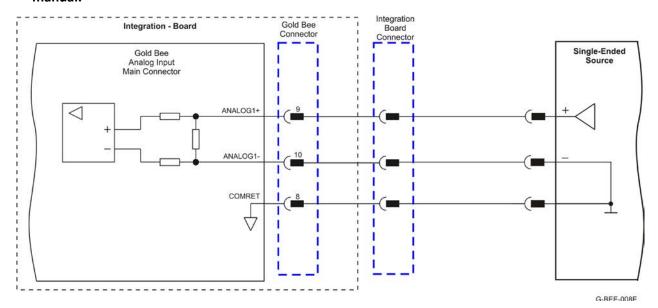


Figure 39: Analog Input

10.4.5. CAN Option

For full details on CANopen communication, see section 14.3 in the MAN-G-Board Level Modules Hardware manual.

10.4.5.1. Interface

The PCB-Mounted Module includes the CAN transceiver and mode choke. Therefore it is required to add a CAN Bus Protector for ESD and other harmful transient voltage events.

The following signals describe how to connect CAN to the external connector.

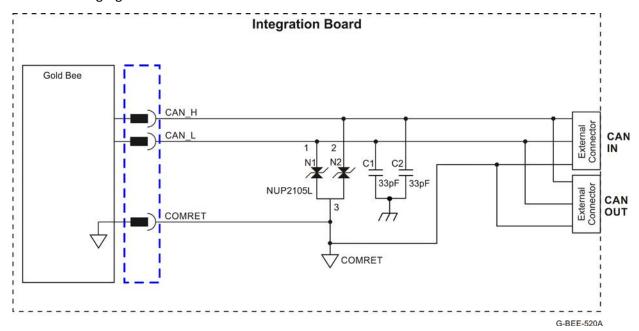


Figure 40: CAN Interface

The following are examples of the components described in Figure 40.

Interface Components	Part	P/N
33PF/50V,NPO,10%	AVX	06035A330JAT1A
DUAL BIDIRECTIONAL VOLTAGE SUPPRESSOR,NUP2105L	ON SEMIC	NUP2105LT1G

10.4.5.2. CAN Layout

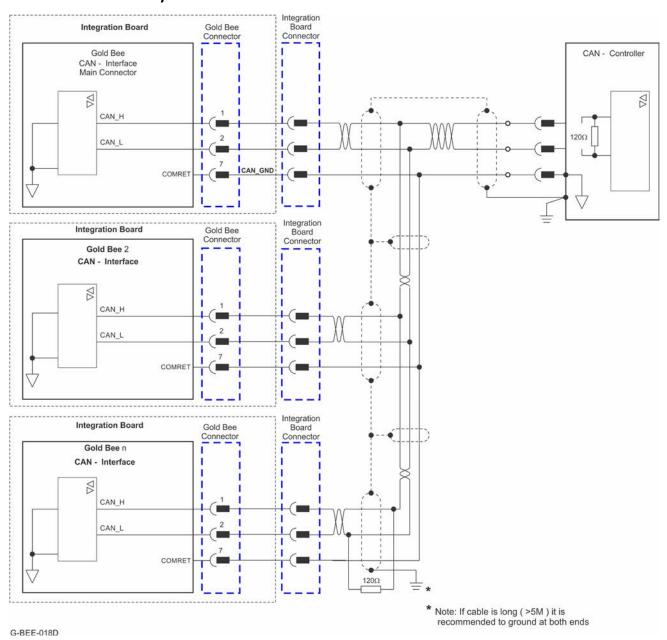


Figure 41: CAN Network Diagram

Caution: When installing CAN communication, ensure that each servo drive is allocated a unique ID. Otherwise, the CAN network may "hang".

Note: Always use CAT5e cables.

10.4.6. RS232

There are two types of RS232: Standard RS232 and RS232 TTL Level.

Figure 42 describes the Standard RS232 connection diagram.

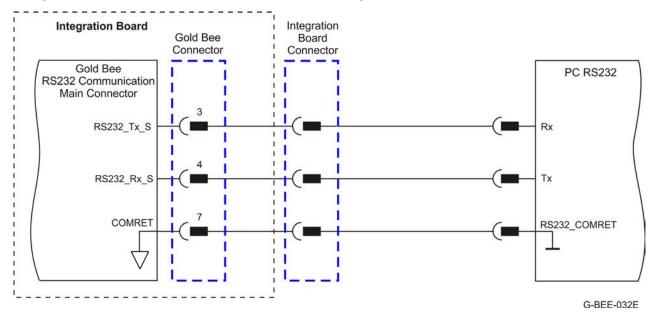


Figure 42: RS232 Connection Diagram

For full details on RS232 TTL Level communication, see section 12.5.1 in the MAN-G-Board Level Modules Hardware manual.

The RS232 TTL Level will be used in order to connect Differential RS232 (RS422).

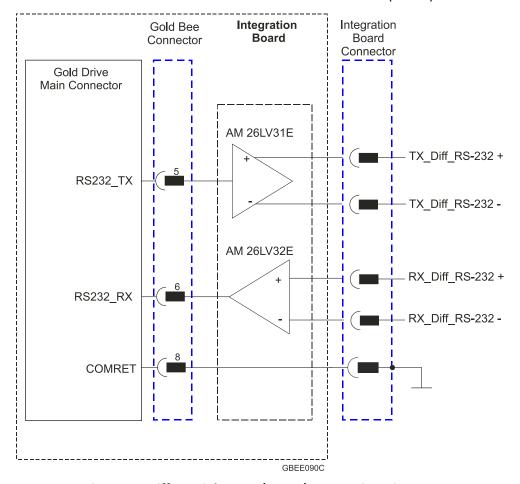
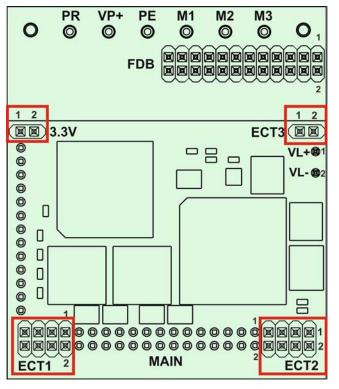



Figure 43: Differential RS232 (RS422) Connection Diagram

10.5. EtherCAT Module

For full details on EtherCAT communication, see Section 12.2 in the in the MAN-G-Board Level Modules Hardware manual.

G-BEE-511A-C

10.5.1. **EtherCAT Module Connectors**

10.5.1.1. ECT2 connector

Pin (ECT2)	Signal	Function
1	USB_VBUS	USB VBUS 5V Detector
2	USBD+	USB_P line
3	COMRET	USB communication return
4	USBD-	USB_N line
5	PHY_IN_LINK_ACT	Indicates EtherCAT IN/Ethernet LINK input
6	PHY_OUT_LINK_ACT	Indicates EtherCAT OUT LINK
7	PHY_IN_SPEED	Indicates EtherCAT IN/Ethernet Speed input
8	PHY_OUT_SPEED	Indicates EtherCAT OUT Speed

Table 10: Connector ECT2

For USB Wires

For short distances between the drive and control, 0.5 to 1.0 m wires can be used and shielding is not required. For longer distances than 1.0 m and/or high EMI environment, shielded and twisted wires should be used. Drain wires should be connected to Elmo COMRET.

10.5.1.2. ECT1 connector

Pin (ECT1)	Signal	Function
1	PHY_OUT_RX+	EtherCAT OUT RX+ Line
2	PHY_OUT_TX+	EtherCAT OUT RX- Line
3	PHY_OUT_RX-	EtherCAT OUT TX+ Line
4	PHY_OUT_TX-	EtherCAT OUT TX- Line
5	PHY_IN_RX+	EtherCAT IN/Ethernet RX+ Line
6	PHY_IN_TX+	EtherCAT IN/Ethernet RX- Line
7	PHY_IN_RX-	EtherCAT IN/ethernet TX+ Line
8	PHY_IN_TX-	EtherCAT IN/Ethernet TX- Line

Table 11: Connector ECT1

Note: EtherCAT IN port can be configured to an Ethernet Port.

Note: Always use CAT5e cables.

10.5.1.3. ECT3 Connector

Pin (ECT3)	Signal	Function
1	SB_Clock	Serial Bus_Clock (9.375Mhz) for extended IO (refer to the MAN-G-Panel Mounted Drives Hardware Manual)
2	SB_Load	Serial Bus Load for extended IO (refer to the MAN-G-Panel Mounted Drives Hardware Manual)

Table 12: Connector ECT3

10.5.1.4. 3.3V Connector

Pin	Signal	Function
1	3.3V	3.3 V supply voltage for EtherCAT LEDs
2	3.3V	3.3 V supply voltage for EtherCAT LEDs

Table 13: 3.3V Connector

IMPORTANT

10.5.2. **EtherCAT Communication**

This section only describes the EtherCAT communication, and the pinout drawing of the connector.

When the EtherCAT is connected and the FoE is in operation, the USB cable connection must be disconnected.

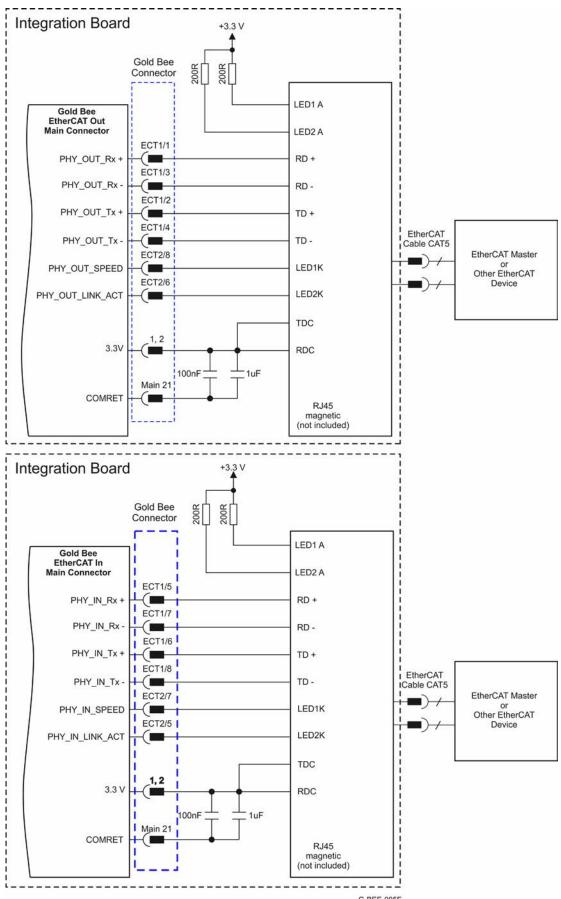


Figure 44: EtherCAT Connection Schematic Diagram

Note: Always use CAT5e cables.

10.5.3. USB 2.0 Communication (for EtherCAT model only)

For full details on USB communication, see section 12.1 in the MAN-G-Board Level Modules Hardware manual.

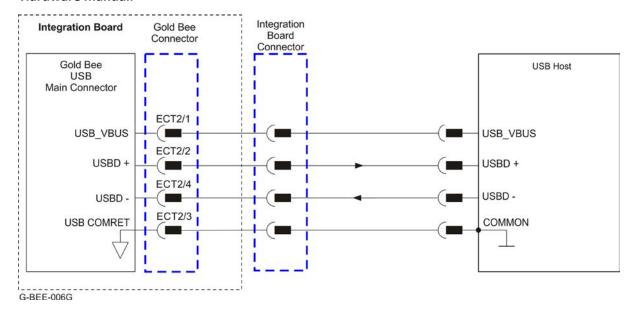


Figure 45: USB Network Diagram

For short distances between the drive and control, 0.5 to 1.0 m wires can be used and shielding is not required. For longer distances than 1.0 m and/or high EMI environment, shielded and twisted wires should be used. Drain wires should be connected to Elmo COMRET.

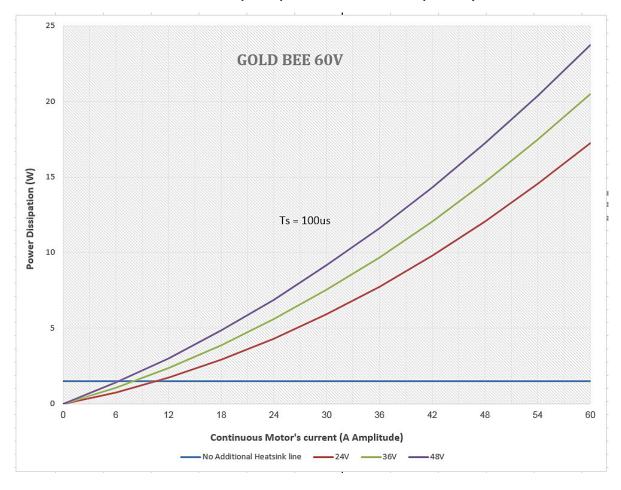
Chapter 11: Powering Up

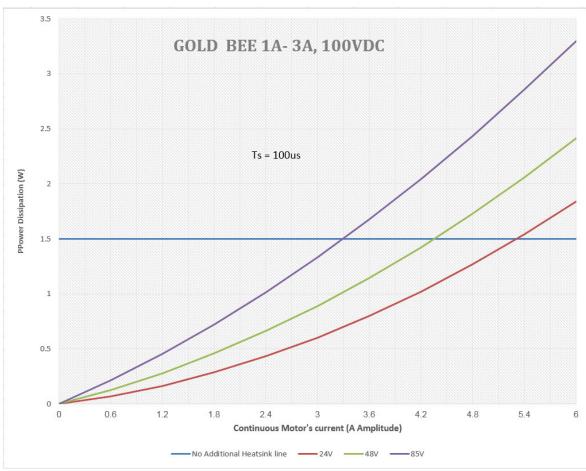
After the Gold Bee is connected to its device, it is ready to be powered up.

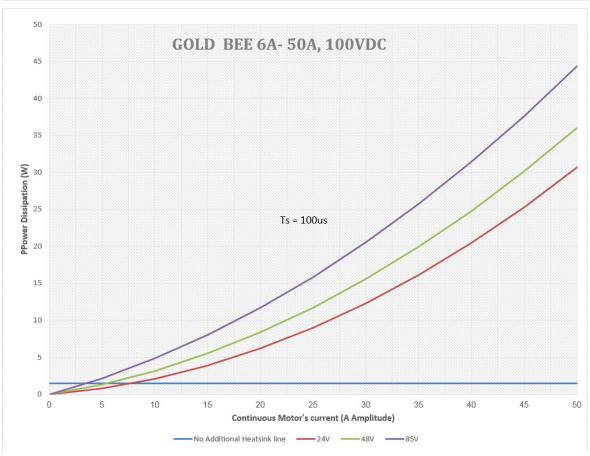
Caution:

Before applying power, ensure that the DC supply is within the specified range and that the proper plus-minus connections are in order.

11.1. Initializing the System

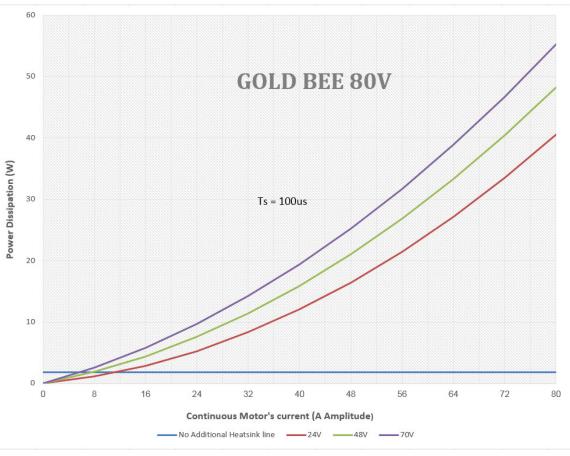

After the Gold Bee has been connected and mounted, the system must be set up and initialized. This is accomplished using the *EASII*, Elmo's Windows-based software application. Install the application and then perform setup and initialization according to the directions in the *EASII User Manual*.

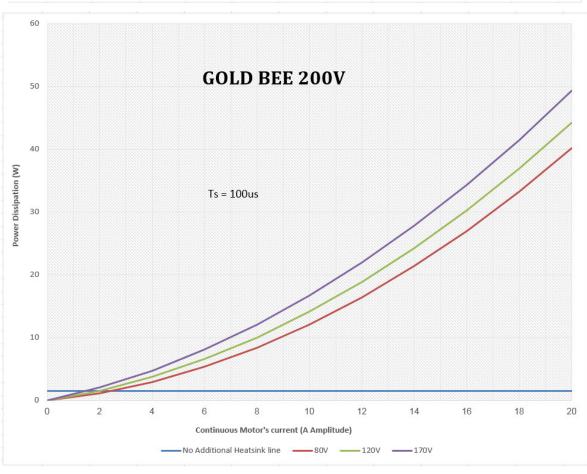

11.2. Heat Dissipation


The best way to dissipate heat from the Gold Bee is to mount it so that its heat-sink is attached to the machine chassis. If mounted with its heat-sink suspended, then for best results mount the servo drive faced upwards and leave approximately 10 mm of space between the Gold Bee's heat-sink and any other assembly.

11.2.1. Heat Dissipation Data

Heat Dissipation is shown graphically below. It should be noted in the graphs below that the Flat Heat Sink and Fins Heat Sink can dissipate up to 5.5W and 7.0W respectively:





MAN-G-BEE (Ver. 2.008)

11.2.2. **How to Use the Chart**

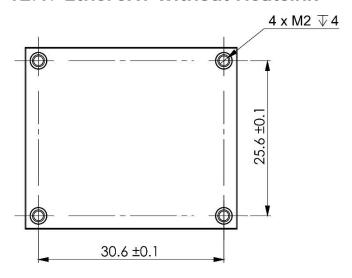
The charts above are based upon the theoretical worst-case scenario. The actual test results display a 20% -30% lower power dissipation.

The above charts indicate the net power conversion losses and exclude the control losses.

To determine if your application heat dissipation requires a heat sink:

- 1. Determine the power dissipation according to the "continuous current" and the DC bus voltage curve.
 - If the DC bus is not one of the three curves above, estimate the dissipation by interpolation. The estimation error is not critical.
- 2. The chart is calculated for continuous current operation, if the actual operation is pulsed current, add 25% to 30% to the power dissipation of the average (RMS) current.
- 3. When the Heat-Sink temperature reaches ≈ 85 °C, the Gold Bee will shut down. Design the system for continuous operation so that the maximum Heat Sink temperature should be no higher than between 80°C to 82°C.
- 4. For model G-BEEXXX/YYYZZ(Blank) or S
 - If the average heat dissipation is less than ≈1.5W (Average operating power of 100W to 200W) there will be no requirement for an external heat sink.
 - If the average Heat dissipation is higher than 1.5W then an additional heat dissipation means is required, usually by connecting to an external heat-sink.

For model G-BEEXXX/YYYZZH


- If the average heat dissipation is less than ≈4W to 5W (Average operating power of 300W to 600W) there will be no requirement for an additional external heat sink.
- If the average Heat dissipation is higher than 4W then an additional heat dissipation means is required, usually by connecting to an additional external heat-sink.
- 5. When an external Heat-Sink is required, calculate the thermal resistance of the heat sink according to:


$$\phi_{\text{°C/W}} = \frac{80^{\circ}\text{C} - T_{Ambient}}{Heat\ Dissipation}$$

Chapter 12: Dimensions

This chapter provides detailed technical dimensions regarding the Gold Bee.

12.1. EtherCAT without Heatsink

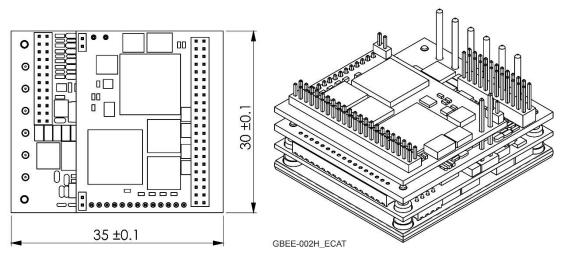


Figure 46: G-Bee-EtherCAT version without heatsink

12.2. EtherCAT with Heatsink

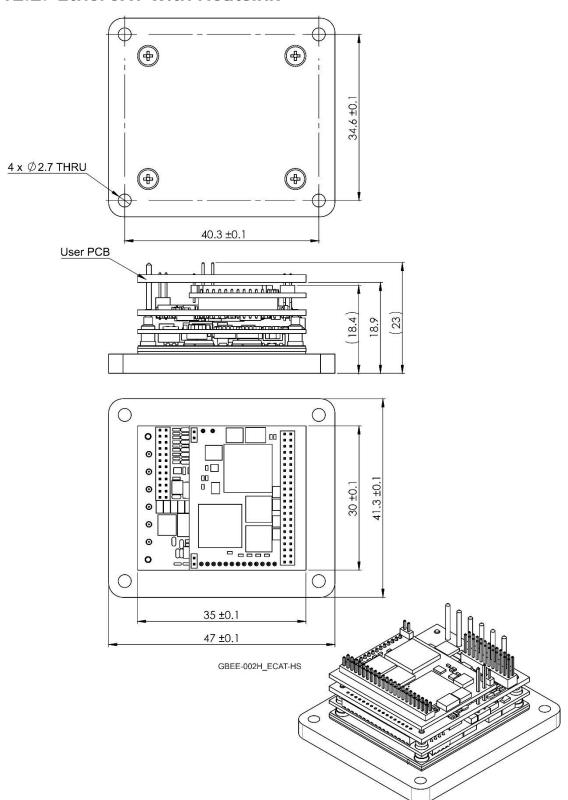


Figure 47: G-Bee –EtherCAT version with heatsink

12.3. CAN without Heatsink

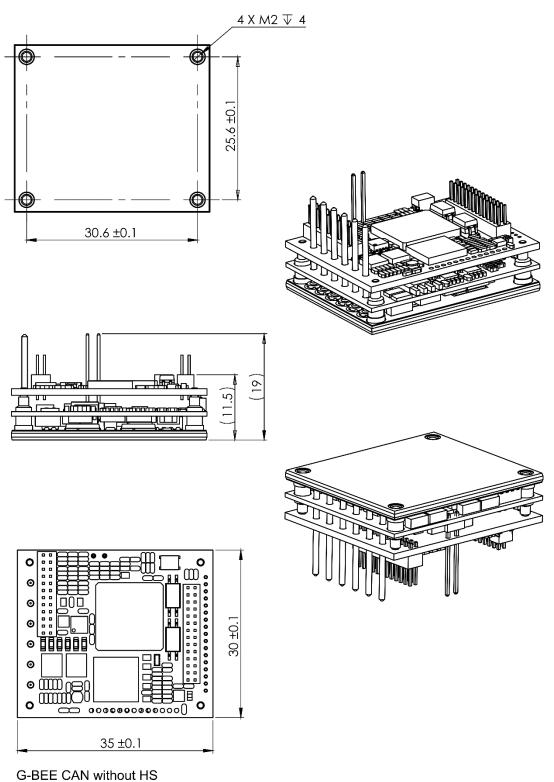
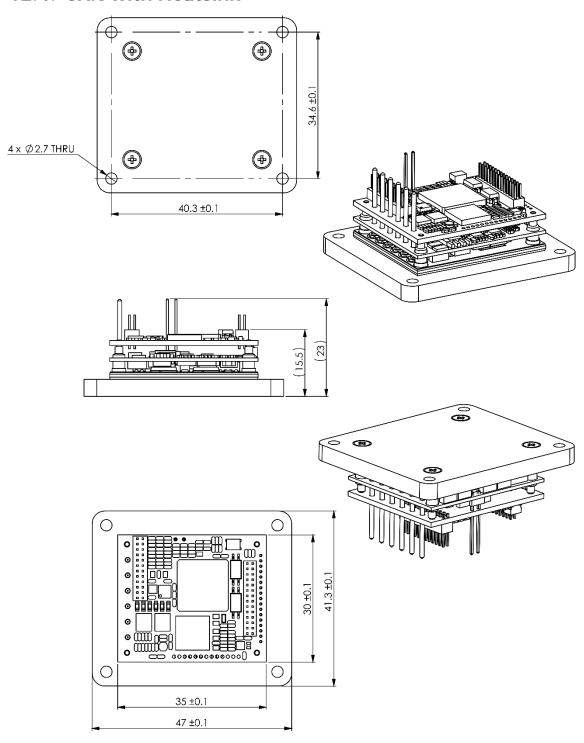
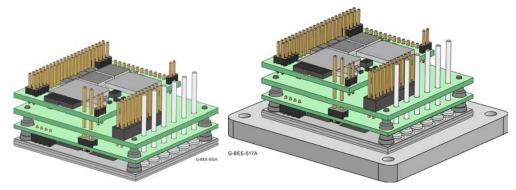



Figure 48: G-Bee -CAN version without heatsink

12.4. CAN with Heatsink

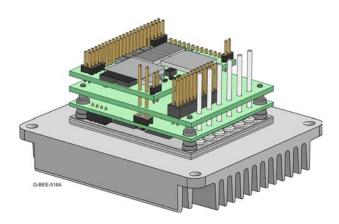
G-BEE CAN + HS

Figure 49: G-Bee -CAN version with heatsink


Chapter 13: Accessories

The model **G-BEEXXX/YYYZZH** is integrated with the Flat Heatsink P/N G-TWIHSFLAT01.

The following describes the accessory kits available for the Gold Bee.


Part Number	Description
G-TWIHSFLAT01	Flat Heat-Sink Kit
G-TWIHSFINS01	FINs Heat-Sink Kit

Optionally, the Gold Bee has two standard heat-sink configurations which are obtainable separately as kit accessories from Elmo:

Default Heat Sink

Flat Heat Sink (P/N G-TWIHSFLAT01)

Fins Heat Sink (P/N G-TWIHSFINS01)

13.1. Accessories Heat Sink Dimensions

Figure 50: G-Bee – Flat Heat Sink (P/N G-TWIHSFLAT01) Dimensions

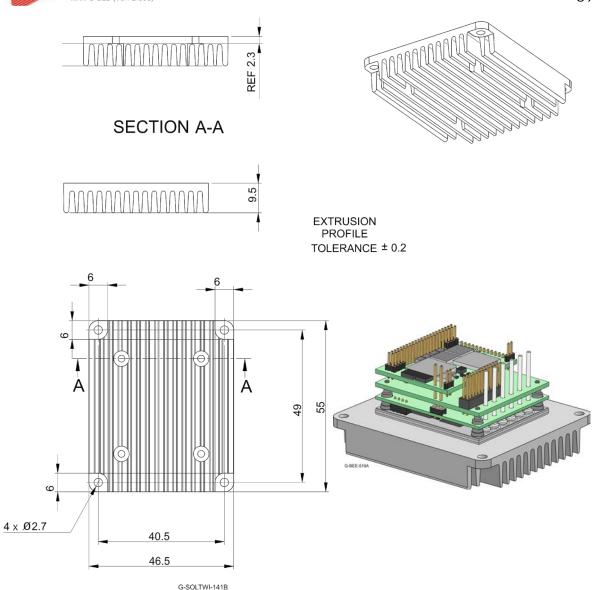


Figure 51: G-Bee – Fins Heat Sink (P/N G-TWIHSFINS01) Dimensions

Inspiring Motion Since 1988

For a list of Elmo's branches, and your local area office, refer to the Elmo site www.elmomc.com

