Issue 3

RGH22 to TONiC/VIONiC/QUANTiC

Linear system upgrade path

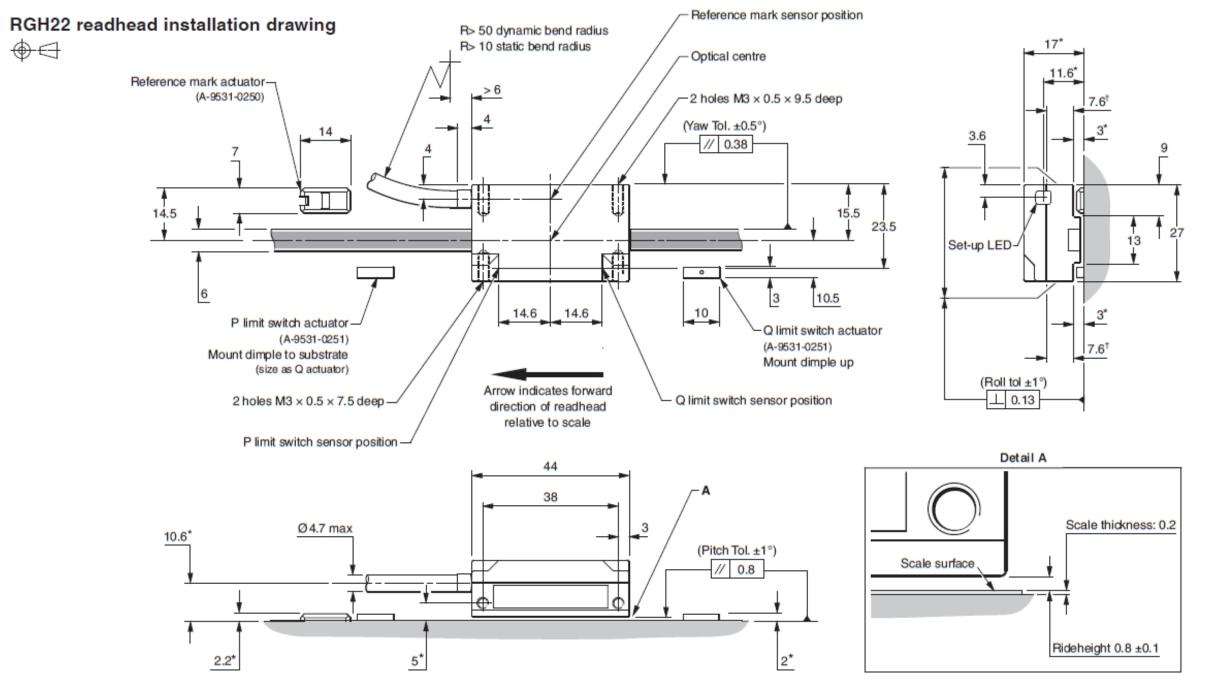
Benefits when upgrading from RGH22 to TONiC/VIONiC/QUANTiC

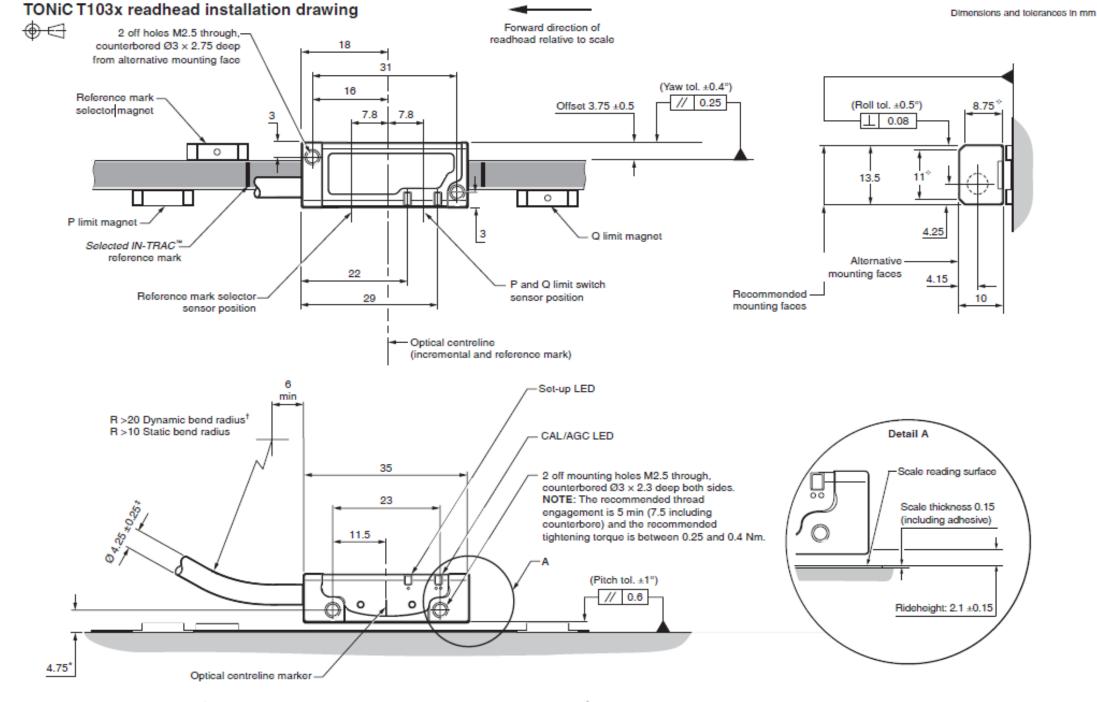
- Smaller size than RGH22
- Increased set-up tolerances for easier installation
- TONiC/ADT View diagnostic software:
 - Easier installation optimization
 - Enhanced reliability
- Higher performance:
 - Lower Sub-Divisional Error (SDE)
 - Higher speeds and resolutions
- Superior *IN-TRAC* reference marks:
 - No manual adjustment of reference mark during calibration
- Adaptor brackets available, for easy mechanical upgrade
 - Note: Only digital outputs are available from VIONiC. RGH22 analogue output systems should therefore be upgraded to TONiC or QUANTiC analogue output systems

apply innovation

RGH22/TONiC/VIONiC/QUANTiC installation

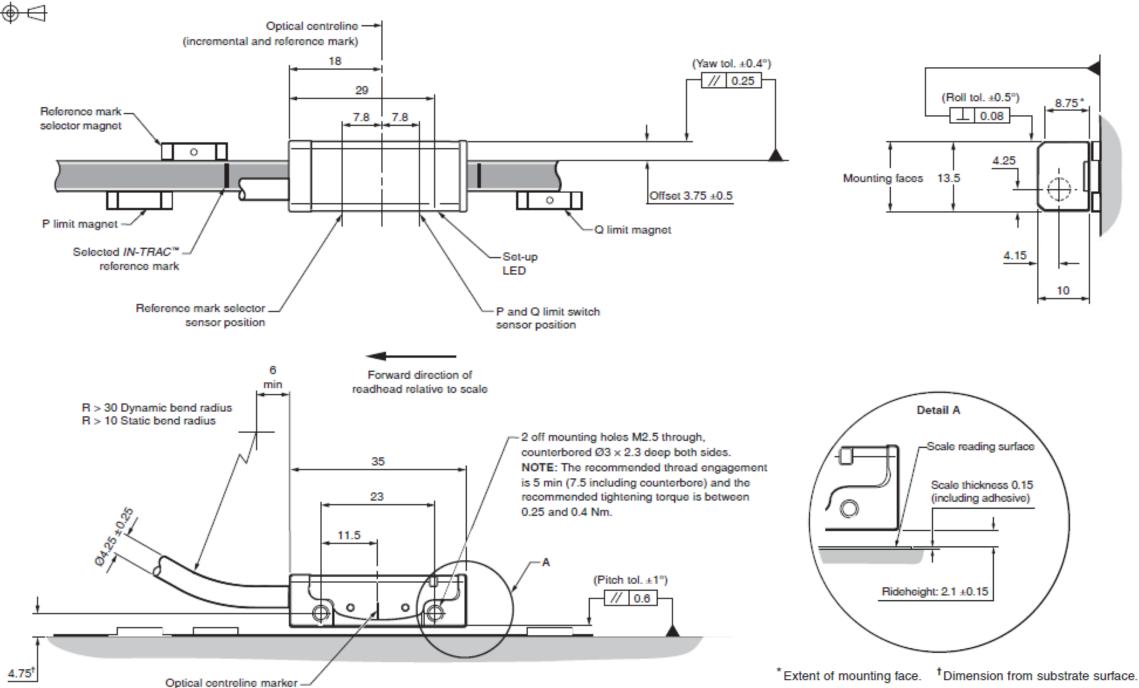
The following six slides contain installation drawings of RGH22 and all upgrade products covered in this document. The scales shown for the upgrade products are the RKLC series, as these are the most compatible with the RGS scale used with the RGH22 readhead, being substrate mastered scales of similar cross-section.

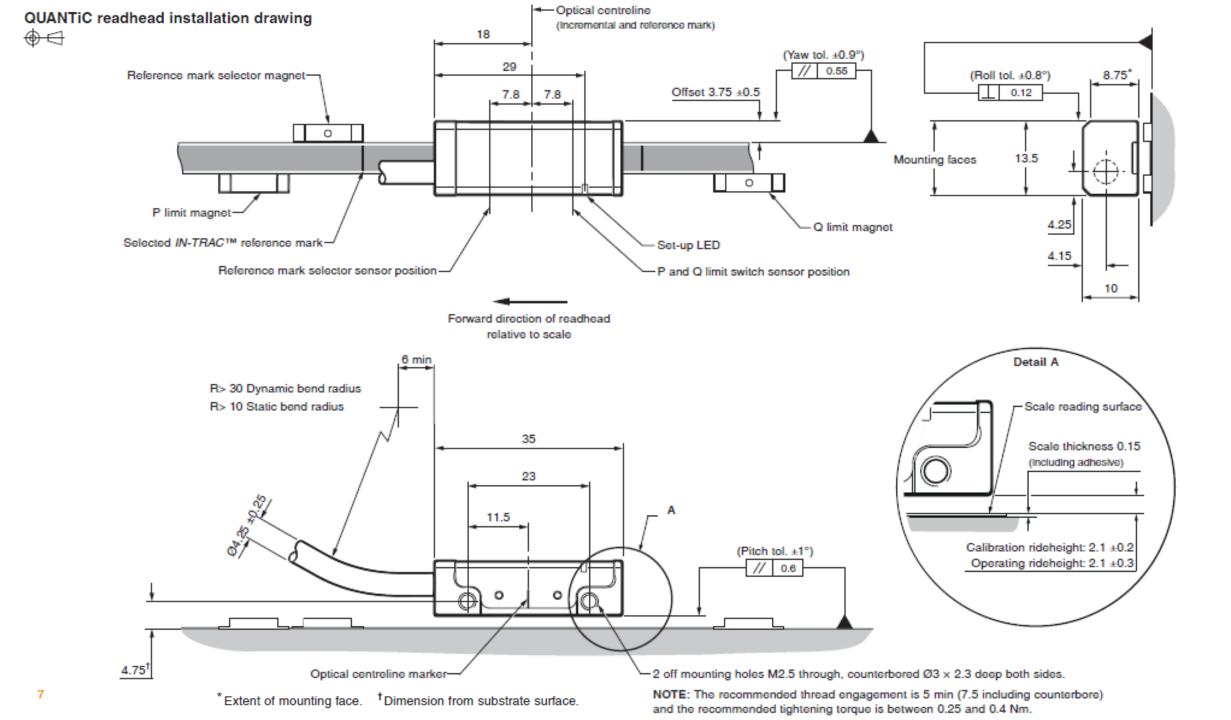

The last two of these slides show installation drawings incorporating the two adaptor brackets available to simplify mechanical upgrade. The selection of bracket depends upon the original RGH22 readhead orientation and positions the upgraded readhead with the same scale, reference mark and optical centerlines. Adaptor bracket mounting holes are the same as the RGH22 readhead, so the customer can continue to use their existing mounting arrangement. Adaptor bracket kits include appropriate screws to fix to the upgraded readhead.


Dimensional differences relating to installation can be seen by studying the installation drawings, with critical differences being highlighted in the two subsequent slides.

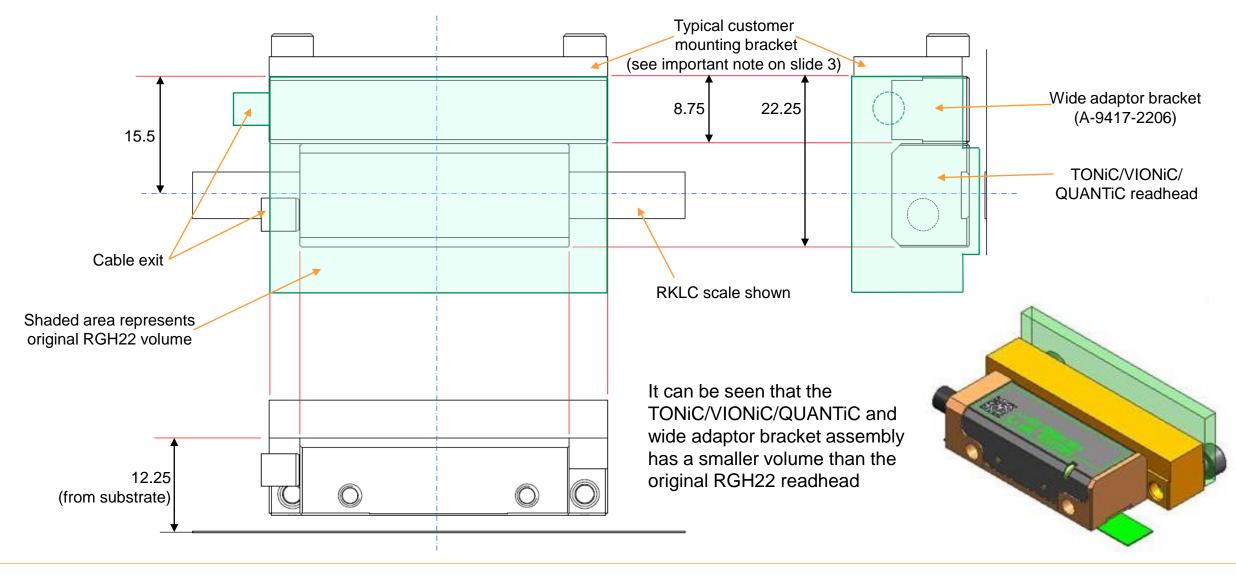
Important note: If the customer is currently using existing adaptor brackets B (A-9531-0262), D (A-9531-0267), E (A-9531-0268), F (A-9531-0269), G (A-9531-0270) or J (A-9531-0264), the new adaptor bracket can simply be connected to their existing one. However, this double bracket arrangement might compromise the stiffness of the readhead mounting so it is advisable for the customer to redesign the bracket arrangement to eliminate adaptor brackets altogether.

Note: Further details about installation of the various possible upgrade systems can be found in the relevant installation guides available to download from the Renishaw.com.

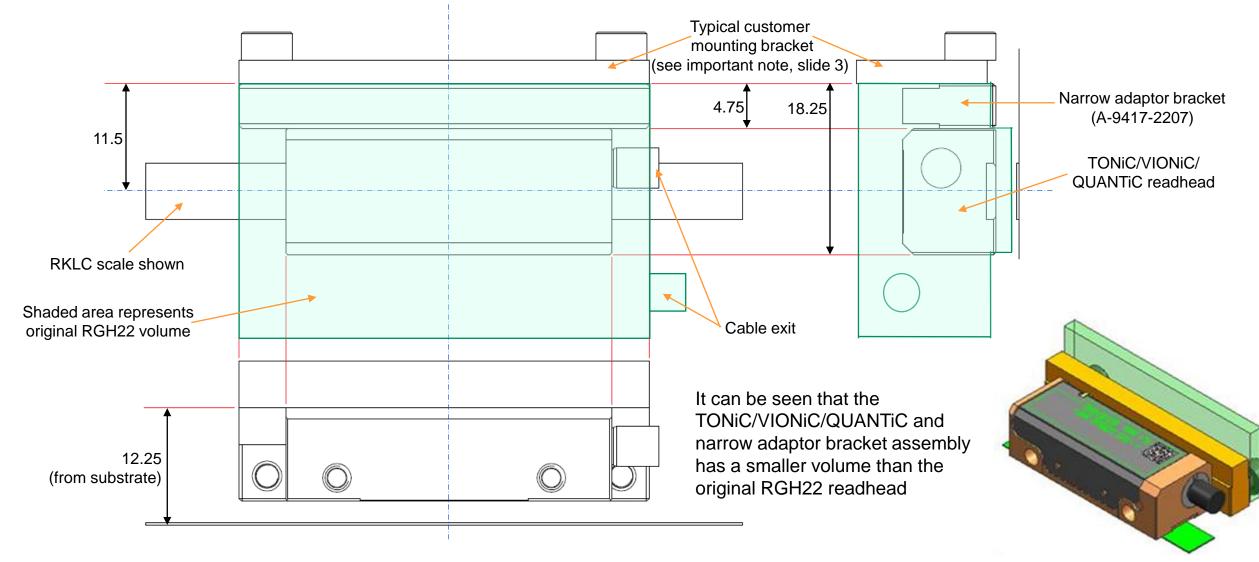




*Dimension from substrate surface. *Dynamic bend radius not applicable for UHV cables. *UHV cable diameter 3 approx. *Extent of mounting faces.

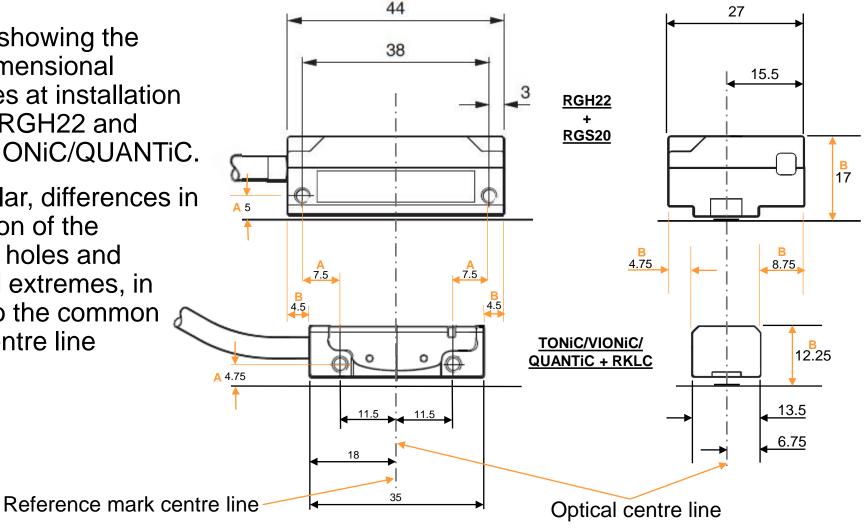

VIONiC readhead installation drawing

6



Upgrade to TONiC/VIONiC/QUANTiC using wide adaptor bracket

Upgrade to TONiC/VIONiC/QUANTiC using narrow adaptor bracket



Critical dimensional differences relating to installation (when not using adaptor brackets)

Diagram showing the critical dimensional differences at installation between RGH22 and TONIC/VIONIC/QUANTIC.

In particular, differences in the position of the mounting holes and readhead extremes, in relation to the common optical centre line

Dimensions A show the differences in mounting hole positions, including height above substrate

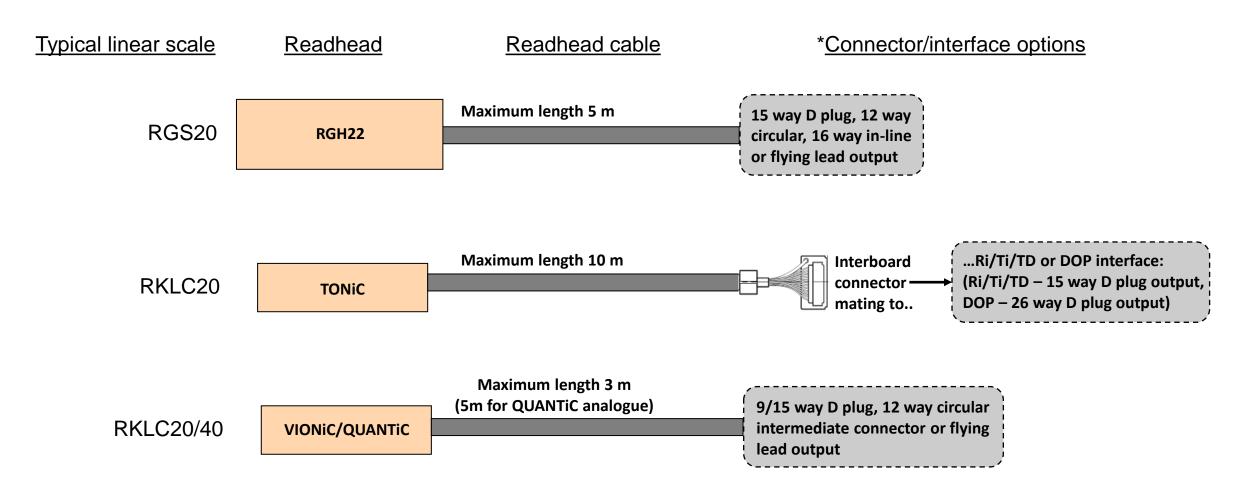
Dimensions B show the differences in the readhead envelope

Critical dimensional differences relating to installation

Fe	Feature/specification		TONiC	VIONiC	QUANTIC		
	Spacing (mm)		23				
Mounting holes*	Thread diameter	M3		M2.5			
10003	Height above substrate (mm)	5		4.75			
Scale cer	ntreline offset from mounting face (mm)	11.5/15.5 depending on readhead orientation					
Overall	height from substrate (mm)	17	12.25		12.25		
	Ride height (±mm)	0.1	0.15	0.15	0.3 (operating)		
Installatio	n Roll (±°)	1	0.5	0.5	0.8		
tolerance	s Pitch (±°)	1	1	1	1		
	Yaw (±°)	0.5	0.4	0.4	0.9		
Maximum readhead cable length (m)		5	10	3	3 (digital) 5 (analogue)		

* Differences in size/position of mounting holes are of no consequence if using adaptor brackets

RGH22 to TONiC/VIONiC/QUANTiC system differences to consider when upgrading

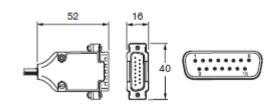

The table below and following slides contain details of system configurations, pinouts, maximum speeds and other differences to consider when upgrading from RGH22 to any of the products covered in this document.

Component/ feature	RGH22	TONIC	VIONiC	QUANTIC		
Typical scale	RGS20	RKLC2	0	RKLC40		
Scale pitch (µm)		20				
Interface	N/A	Ti/Ri	N	J/A		
Output	Digital or analogue	Digital or analogue from Ti/Ri interface	Digital only	Digital or analogue		
Reference mark/ limit switch	Magnetic reference mark and single/dual magnetic limit switches using actuator fitted alongside scale	Optical <i>IN-TRAC,</i> no actuator required, although selector magnet may be needed depending on application				

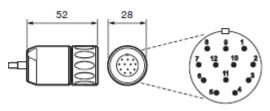
Note: Further details about RGH22 and the various possible upgrade systems can be found in the relevant installation guides available to download from Renishaw.com.

System configuration differences

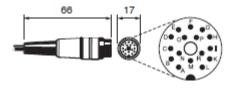
*Connector and interface output pinouts follow standard Renishaw practice. See following pages or relevant installation guides at Renishaw.com for details



RGH22 pinouts (digital)


Digital RS422A outputs - RGH22D, X, Z, Y, H, P, Q, R and S

Function	Signal		Colour	15-way D-type plug (D)	12-way circular (R)	16-way in-line connector (X)	
Power	5	v	Brown	7	2	А	
	5	v	Brown (link)	8	12	М	
	0	v	White	2	10	В	
	0	v	White (link)	9	11	N	
Incremental	А	+	Green	14	5	G	
signals	A	A	-	Yellow	6	6	D
	В	+	Blue	13	8	R	
		_	Red	5	1	F	
Reference mark		+	Violet	12	3	к	
	Z	-	Grey	4	4	0	
Limit switch*	(Q	Pink	10	-	н	
Alarm	E	+	Black	11	9	I.	
	E	_	Orange	3	7	Р	
External set-up	2	x	Clear	1	-	E	
Shield	Inner Outer		Green / Yellow	15	11 (link)	L	
			_	Case	Case	Case	

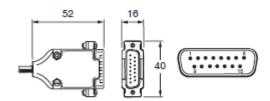

15-way D-type plug (termination code D)

12-way circular plug (termination code R)

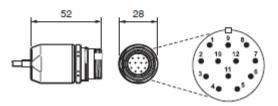
16-way in-line connector plug (termination code X)

*Dual limit versions (RGH22P, Q, R, S and H) utilise the black wire (pin 11) as the P limit output.

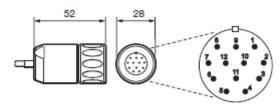
The 'E' alarm signal on these versions is only available at the orange wire as a single-ended E- output.

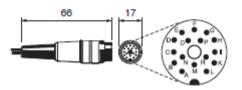


RGH22 pinouts (analogue)


Analogue 1 Vpp outputs - RGH22A and B

Function	Signal		Colour	15-way D-type plug (L)	12-way circular (V)	12-way circular coupling (W)	16-way in-line connector (X)		
Power	F	v	Brown	4	2	2	A		
	5	v	Brown (link)	5	12	12	м		
	0	v	White	12	10	10	В		
	0	v	White (link)	13	11	11	N		
Incremental	v	+	Red	9	5	5	F		
signals	V ₁	-	Blue	1	6	6	R		
	v	+	Yellow	10	8	8	D		
	V ₂	v ₂	v ₂	-	Green	2	1	1	G
Reference mark	v	+	Violet	3	3	3	к		
	Vo	-	Grey	11	4	4	0		
Limit switch*	١	/ _q	Pink	8	N/C	N/C	Н		
External set-up		/	Clear	7	N/C	N/C	E		
Reference mark uni-directional	BID		Black	6	9†	9#	I.		
operation [‡]	D	IR	Orange	14	7†	7#	Р		
Shield	Inr	ner	Green / Yellow	15	11 (link)	11 (link)	L		
	Ou	ıter	-	Case	Case	Case	Case		


15-way D-type plug (termination code L)


12-way circular coupling (termination code W)

12-way circular plug (termination code V)

16-way in-line connector plug (termination code X)

*Dual limit versions (RGH22A) utilise the clear wire (pin 7) as the V_p limit output. The V_x external set-up signal on these versions is not available. Dual limit readheads are only available with F, L or X terminations.

TONIC Ti and TD interface pinouts

Interface output (analogue) Ti0000 only

Function	Outpu	it type	Signal		Pin
Power			5 V F	Power	4
			5 V S	Sense	5
			0 V F	ower	12
			0 V S	Sense	13
Incremental signals		Casina	v	+	9
		Cosine	V,	-	1
	Analogue	Sine	V ₂	+	10
				-	2
Reference mark	Anal	ogue	V	+	3
	Anai	ogue	V _o	-	11
Limits	Open c	ollector	V _p		7
			V _q		8
Set-up	-	-	V _x		6
Calibrate	-		C	AL	14
Shield	-	-	Inner	shield	Not connected
	-	-	Outer	shield	Case

For Ri and DOP interface outputs, see relevant installation guides at Renishaw.com

nterface output (digit	al) Ti0004 to Ti20k	Interface			
nd TD4000 to TD0040	-	Ti0004 - Ti20KD	TD4000 - TD0040		
Function	Output type	Sig	ynal	Pin	Pin
Power		5	v	7, 8	7, 8
		0	V	2, 9	2, 9
Incremental		А	+	14	14
	RS422A	Ŷ	-	6	6
	Digital	в	+	13	13
		5	-	5	5
Reference mark	RS422A	z	+	12	12
	Digital	2	-	4	4
Limits	Open collector	P*		11	-
	Open collector	Q†		10	-
Set-up	RS422A Digital	1	х	1	1
Alarm [±]		Е	+	-	11
	-	L .	-	3	3
Resolution switching [†]	-			-	10
Shield	-	In	ner	-	-
	-	Outer		Case	Case

[†]Becomes alarm (E+) for Ti options E, F, G, H

[‡]The alarm signal can be output as a line driver signal or 3-state. Please select the preferred option at time of ordering.

⁹On TD interfaces pin 10 should be connected to 0 V to switch to lower resolution.

Output connector for all interfaces; 15 way D-type plug

VIONiC and QUANTiC pinouts (digital)

						B 		[1
Function	Sig	jnal	Colour	9-way D-type (A)	15-way D-type (D)	15-way D-type alternative pin-out (H)	12-way circular connector [↑] (X)	14-way JST (J)
Power	5 V		Brown	5	7, 8	4, 12	G	10
Power	0 V		White	1	2, 9	2, 10	Н	1
Incremental	A	+	Red	2	14	1	М	7
	~	-	Blue	6	6	9	L	2
	в	+	Yellow	4	13	3	J	11
			Green	8	5	11	к	9
Reference	-7	+	Violet	3	12	14	D	8
mark	Z	-	Grey	7	4	7	E	12
1.1	F	P	Pink	-	11	8	A	14
Limits	Q		Black	-	10	6	В	13
Alarm	Е		Orange	-	3	13	F	3
Remote CAL*	C	AL	Clear	9	1	5	С	4
Shield		-	Screen	Case	Case	Case	Case	Ferrule

* Remote CAL line must be connected for use with ADTi 100

QUANTIC analogue pinouts

							8 •••••	[[
Function		Signal		Colour	9-way D-type (A)	15-way D-type (L)	15-way D-type alternative pin-out (H)	14-way JST (J)
Power		5	v	Brown	5	4, 5	4, 12	10
rowei		0 V		White	1	12, 13	2, 10	1
	Cosine	V,	+	Red	2	9	1	7
			24	Blue	6	1	9	2
Incremental	Sine	Sine V ₂	+	Yellow	4	10	3	11
			1	Green	8	2	11	9
Reference ma			+	Violet	3	3	14	8
neterence ma	rk.	V ₀	-	Grey	7	11	7	12
Line Dec		V	p	Pink		7	8	14
Limits			q	Black	-	8	6	13
Setup		V	x	Clear	-	6	13	
Remote CAL*		C/	AL.	Orange	9	14	5	4
Shield				Screen	Case	Case	Case	Ferrule

* Remote CAL line must be connected for use with ADTi-100

Speed comparison – RGH22, TONiC, VIONiC, QUANTiC

As can be seen from the following pages, TONiC, VIONiC and QUANTiC maximum speeds are significantly higher than those of RGH22, particularly for lower resolutions, higher clock options and analogue versions. When upgrading from an RGH22D/X/Z/P/Q/R non-clocked output to a clocked output TONiC, VIONiC or QUANTiC, customers should select the lowest clock frequency option that will satisfy their resolution and maximum speed requirements. A worked example is shown below:

<u>Worked example – upgrading from non-clocked to clocked system</u>

Existing customer system	. RGH22Z (0.5 µm resolution)
Maximum speed requirement	.2.8 m/s
Upgrade system	VIONIC

The excerpt from the VIONiC speed table shows that the customer would first select the 0.5 μ m resolution column, then select the lowest clocked output option that would satisfy the maximum speed requirement, in this case, option 08 (8 MHz)

NOTE: For VIONiC and QUANTiC Other clocked output options are available where necessary to ensure system compatibility when upgrading

Clocked output							
option (MHz)	D (5 μm)	Χ (1 μm)	Z (0.5 μm)	W (0.2 μm)			
50	12	12	12	7.25			
40	12	12	12	5.80			
25	12	12	9.06	3.63			
20	12	12	8.06	3.22			
12	12	10.36	5.18	2.07			
10	12	8.53	4.27	1.71			
08	12	6.91	3.45	1.38			
06	12	5.37	2.69	1.07			
04	12	3.63	1.81	0.730			
01	4.53	0.910	0.450	0.180			

RGH22 speed tables

Digital readheads

Non-clocked output readheads

Head type	Maximum speed (m/s)	Lowest recommended counter input frequency (MHz)
D and P (5 μm)	10	
Χ and Q (1 μm)	5	$\left(\frac{\text{Encoder velocity (m/s)}}{\text{Resolution (µm)}}\right) \times 4 \text{ safety factor}$
Ζ and R (0.5 μm)	3	

Clocked output readheads

The RGH22Y, S and H readheads are available with a variety of different clocked outputs. Customers must ensure they comply with the lowest recommended counter input frequency.

	Maximum s	I sugget up a sum on dark a sum to a	
Options	Head	Lowest recommended counter input frequency (MHz)	
	Υ and S (0.1 μm)	H (50 nm)	input nequency (mnz)
61	1.3	0.6	20
62	0.7	0.3	10
63	0.35	0.15	5

Analogue readheads

RGH22A and B - 4 m/s (-3dB)

TONiC interface (Ti and Ri) speed tables

Ti interface

Clocked output	Maximum speed (m/s)										
option (MHz)	Ti0004 5 μm	Ti0020 1 μm	Ti0040 0.5 μm	Ti0100 0.2 μm	Ti0200 0.1 μm	Ti0400 50 nm	Ti1000 20 nm	Ti2000 10 nm	Ti4000 5 nm	Ti10KD 2 nm	Ti20KD 1 nm
50	10	10	10	6.48	3.240	1.625	0.648	0.324	0.162	0.065	0.032
40	10	10	10	5.40	2.700	1.350	0.540	0.270	0.135	0.054	0.027
25	10	10	8.10	3.24	1.620	0.810	0.324	0.162	0.081	0.032	0.016
20	10	10	6.75	2.70	1.350	0.670	0.270	0.135	0.068	0.027	0.013
12	10	9	4.50	1.80	0.900	0.450	0.180	0.090	0.045	0.018	0.009
10	10	8.10	4.05	1.62	0.810	0.400	0.162	0.081	0.041	0.016	0.0081
08	10	6.48	3.24	1.29	0.648	0.324	0.130	0.065	0.032	0.013	0.0065
06	10	4.50	2.25	0.90	0.450	0.225	0.090	0.045	0.023	0.009	0.0045
04	10	3.37	1.68	0.67	0.338	0.169	0.068	0.034	0.017	0.0068	0.0034
01	4.2	0.84	0.42	0.16	0.084	0.042	0.017	0.008	0.004	0.0017	0.0008
Analogue output	10 (-3dB)										

Ri interface

(non-clocked outputs)

Analogue Ri interface 10 m/s (-3dB)

Interface model	Maximum speed (m/s)			
0004 (5 μm)	10			
0020 (1 µm)	10			
0040 (0.5 μm)	10			

Ri interface	Ма	aximum speed (mm	Minimum receiver clock frequency		
(clocked outputs)	0100 (0.2 µm)	0200 (0.1 µm)	0400 (50 nm)	(MHz)	
	-	800	400	12	
	-	500	250	10	
	800	400	200	6	
	500	250	120	4	

VIONiC speed table

Clocked output	Maximum speed (m/s)											
option (MHz)	5 μm (D)	1 μm (X)	0.5 μm (Z)	0.2 μm (W)	0.1 μm (Y)	50 nm (H)	40 nm (M)	25 nm (P)	20 nm (I)	10 nm (O)	5 nm (Q)	2.5 nm (R)
50	12	12	12	7.25	3.63	1.81	1.45	0.906	0.725	0.363	0.181	0.091
40	12	12	12	5.80	2.90	1.45	1.16	0.725	0.580	0.290	0.145	0.073
25	12	12	9.06	3.63	1.81	0.906	0.725	0.453	0.363	0.181	0.091	0.045
20	12	12	8.06	3.22	1.61	0.806	0.645	0.403	0.322	0.161	0.081	0.040
12	12	10.36	5.18	2.07	1.04	0.518	0.414	0.259	0.207	0.104	0.052	0.026
10	12	8.53	4.27	1.71	0.850	0.427	0.341	0.213	0.171	0.085	0.043	0.021
08	12	6.91	3.45	1.38	0.690	0.345	0.276	0.173	0.138	0.069	0.035	0.017
06	12	5.37	2.69	1.07	0.540	0.269	0.215	0.134	0.107	0.054	0.027	0.013
04	12	3.63	1.81	0.730	0.360	0.181	0.145	0.091	0.073	0.036	0.018	0.009
01	4.53	0.910	0.450	0.180	0.090	0.045	0.036	0.023	0.018	0.009	0.005	0.002

QUANTiC speed table

Clocked output	Maximum speed (m/s)								
option (MHz)	Τ (10 μm)	D (5 µm)	Χ (1μm)	Ζ (0.5 μm)	W (0.2 μm)	Υ (0.1 μm)	H (50 nm)		
50	24	24	24	18.13	7.25	3.626	1.813		
40	24	24	24	14.50	5.80	2.900	1.450		
25	24	24	18.13	9.06	3.63	1.813	0.906		
20	24	24	16.11	8.06	3.22	1.611	0.806		
12	24	24	10.36	5.18	2.07	1.036	0.518		
10	24	24	8.53	4.27	1.71	0.853	0.427		
08	24	24	6.91	3.45	1.38	0.691	0.345		
06	24	24	5.37	2.69	1.07	0.537	0.269		
04	24	18.13	3.63	1.81	0.73	0.363	0.181		
01	9.06	4.53	0.91	0.45	0.18	0.091	0.045		
Analogue output		20 (-3dB)							

Other significant differences/considerations

Feature/specification		RGH22	TONIC	VIONiC	QUANTIC	Notes			
Wire size (awg)		28		32		If in-line or customer terminated connectors are used in the readhead cable, care is required when upgrading			
Readhead	Number of cores	Double scree	en + 12 cores	Single screen + 12 cores					
cable	flex life (x 10 ⁶ cycles)	20 @ 50mm bending radius	20 @ 20mm bending radius	1 - 20 (a) - 30 mm bending ra		due to the thinner wires, screening and number of cores in upgrade products.			
Sub-divisional error (SDE) (±nm)		150	30	15 80 (digital) 120 (analogue)		Performance benefit of upgrade			
Limit switch and reference mark capability		Single or dual limit switch and reference mark	Dual limit switches and reference mark			Functional / performance			
Reference mark repeatability		Uni-directional (magnetic)	Bi-directiona	al (<i>IN-TRAC</i> refe	benefit of upgrade				
Analogue refe	Analogue reference mark width			360° nominal	Consideration of input electronics				
Readhead operating temperature (°C)		0 to 55	0 to 70			0 to 70 Functional benefit of upg			Functional benefit of upgrade
Scale accuracy (µm/m)		15 (RGS20)	5 (RKLC 20, RKLC 40H) 15 (RKLC 40)			Performance benefit of upgrade and RKLC stainless steel scales are more robust			

